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Executive summary

The main goal of this deliverable is to describe the general Adversarial Risk Analysis (ARA)
methodology used in the SECONOMICS toolkit. This deliverable also addresses the issues
and characteristics that are needed to model operational security problems for Critical In-
frastructure Protection (CIP) in the real-world scenarios addressed in the project.

Some of these issues were already identified in the various case studies studied in
D5.2—Case Studies in Security Risk Analysis, derived from the outcomes of SECONOMICS
WP1, WP2 and WP3. The basic models used to solve these case studies needed to be ex-
panded with ad-hoc modifications to accommodate the complexities posed by these new
scenarios, as e.g. the presence of multiple risks simultaneously affecting several locations,
among other advanced requirements. The general methodology proposed in this deliverable
overcomes these shortcomings, presenting a rich framework to integrate additional dimen-
sions that help us in reflecting the nuances of the underlying CIP problems in greater detail.

Specifically, this deliverable includes:

* A complete specification of a methodology to design general models based on ARA
and its application to solve CIP problems.

* Design requirements for the development of tools implementing this methodology in
different domains, which serves as an input for WP8-Tool Support.

« Two new case studies illustrating the application of this general methodology, along
with its main advantages to identify and address future and emerging threats.

The main body of this document provides a high-level overview of the different aspects
and factors that can be considered in this general ARA methodology to solve CIP problems.
Besides, this document also includes several Annexes providing a more detailed and techni-
cal description of the core elements that enable such generalised approach (ANNEX1, AN-
NEX2 and ANNEX3), along with two case studies illustrating the application of the proposed
methodology (ANNEX4 and ANNEXS5). As a result, the main sections of this document body
try to minimise as much as possible the use of mathematical, statistical and technical ter-
minology and concepts, in order to provide an accessible description of the main scientific
and technical contributions. In any case, multiple pointers to the Annexes are also provided
in the corresponding sections for those readers interested in further theoretical details and
practical technicalities.

108



1. Deliverable Scope and Structure

This deliverable describes a general methodology to design and implement Adversarial Risk
Analysis (ARA) models to address Critical Infrastructure Protection (CIP) problems. It also
provides an outline of requirements to devise tools implementing this model in practical set-
tings.

The proposed solution described in this document builds on requirements and knowledge
produced in WPs 1, 2 and 3. Likewise, this methodology stems from the outcomes of deliv-
erables D5.1—Basic Models for Security Risk Analysis and D5.2—Case Studies in Security
Risk Analysis. Such documents considered basic application settings and suggested the
need for the general approach presented here to tackle more complex scenarios.

This document is organised as follows. Section 2 introduces the proposed methodol-
ogy to build general ARA models and to address complex scenarios related to CIP prob-
lems. First, we briefly describe typical layouts and conditions defining these problems.
They include structural aspects (like the existence of single or multiple objectives) as well
as behavioural aspects of participants (such as coordination among attackers or defenders).
Then, we outline the main steps to implement the proposed methodology, highlighting novel
contributions and their impact to address emerging and future threats in different contexts.
In Section 3 we summarise the main results and assessments obtained from the application
of ARA models to address CIP problems in specific application domains, incorporating more
advanced requirements.

Besides, we include several Annexes presenting in full detail the core elements of this
general ARA methodology and its application to two case studies: ANNEX1 describes the
modelling of CIP problems with multiple defenders and multiple attackers. ANNEX2 intro-
duces the elements to model advanced strategic approaches that can be adopted by at-
tackers. ANNEXS3 provides additional details about Biagent Influence Diagrams (BAID), a
graphical approach that help us formalised this type of problems. Finally, the two case stud-
ies concerning a cross-domain problem (Oil & Gas sector and cybersecurity) and a railway
network in south Spain are developed in ANNEX4 and ANNEXS5, respectively.
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2. General Adversarial Risk Analysis Models

D5.3 describes a risk analysis methodology for security resource allocation in general CIP
problems, involving complex interactions between participants. In these scenarios, one or
multiple defenders will try to protect the utility of components of the critical infrastructure
from multiple threats created by one or several adversaries, called attackers. The general
risk analysis models derived from this methodology will let us formalise the characteristics
of the critical infrastructure and the agents involved in the problem, as well as a variety of
conditions that may exert a direct impact on their decision-making processes to achieve their
respective goals.

The rationale for the design of this generalised risk analysis methodology stems from the
previous work conducted in this WP, which was described in deliverables D5.1 and D5.2. In
D5.1, five template models were presented to illustrate the application of simple risk analysis
models to the resolution of security policy making problems. These models were founded on
the ARA theoretical framework. For each model, we included a simple motivating example
and a basic numerical illustration.

In turn, these basic models can be adopted as baseline building blocks to formalise and
solve more general CIP risk analysis problems in different application domains, as it was
illustrated in D5.2. In it, problems related to the airport (D1.3—Airport Requirements final
version, from WP1) and metro (D3.3—Urban Public Transport Requirements final version,
from WP3) case studies were formulated. Likewise, we also outlined the solution for the grid
case study (D2.3—National Grid Requirements final version, from WP2). We used the ARA
framework, adapting the basic templates as required to deal with the specific features and
the inherent complexity of such case studies.

The proposed models could be applicable to other CIP problems with similar features
or underlying structures. However, the case studies considered in D5.2 evidenced a num-
ber of modelling issues that would always imply the adaptation of this basic methodology
to deal with the particular traits or structural features of new case studies. As a result, this
caveat suggested us the need to create a generalised methodology, also founded on the
ARA framework, that could be flexible enough as to accommodate more complex require-
ments in real-world scenarios. Additionally, this general methodology will be better suited
to deal with any future emerging threat that might not have been initially considered in the
definition and characterisation of the various problem scenarios.

Therefore, we briefly describe in this section our work to define a general ARA methodol-
ogy to formalise and solve complex CIP problems. This methodology allows for more general
conditions, such as more complex structures, advanced strategies adopted by participants
or coordinated actions of attackers and/or defenders, that were not previously considered in
our previous work. First, we break down the additional assumptions and conditions that can
be incorporated in this generalised methodology for the resolution and assessment of CIP
problems. Further details about this work can be found in ANNEX1, ANNEX2 and ANNEXS3.
Then, we detail the necessary steps to follow this methodology for the creation of models
that can be applied to particular case studies.
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2.1 Critical Infrastructure Protection problems

The goal of the taxonomy presented in this section is to offer a general picture of the different
options and dimensions that can be considered in the formalisation of CIP problems. These
options can exert an influence on how the different components of the CIP problem are
modelled and interpreted in the ARA framework.

Topology and structure of the CIP

The first dimension to consider in the definition and formalisation of the CIP problem is
the existence of any topological or structural characteristics of the underlying infrastructure
that may be worth considering to create a model that better reflects the real situation to be
assessed. In this case, the different options are:

* No spatial or network structure: The targets or components of the infrastructure
neither have relevant physical or functional relationships among them nor they rely
structurally on each other. Then, two possible alternatives can be considered:

— Single location: We model the Cl as a single location threaten by attackers. For
instance, this corresponds to the case of the ATC Tower presented in Section 2 of
D5.2.

— Muiltiple locations: The Cl is modelled as multiple locations which are not linked
or related in any particular way among each other. For example, this pertains to
the metro case study summarised in Section 3 of D5.2.

+ Spatial structure: We considered the Cl as composed of several targets which rely
structurally on each other, so that an attack on one of such locations may increase the
vulnerability of others depending on it. This alternative corresponds to the case of an
urban space divided in neighbourhoods outlined in ANNEXS5 of D5.1.

» Network structure: In this case, the underlying infrastructure is modelled as a network
composed of nodes and links connecting them. Then, different approaches can be
adopted, depending on where the value to be defended resides:

— Network with values at nodes only: In some network problems, value is only
attained at nodes. A typical example could be an underground transport system,
where the value for different types of attackers is located only at the stations, as
explained in Section 3 of D5.2.

— Network with values at nodes and links: This is a generalisation of the previous
case, in which value can be also encountered at links. Therefore, any attack or
threat on one element may get transferred further to one or several other elements
in the system, due to existing linkages. The work to address this advanced case
is developed in complete detail in ANNEX4 of this deliverable.
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 Parallel systems: The entire system is threatened only when all of its elements have
been compromised. For instance, parallel computing systems typically consist of mul-
tiple nodes that perform similar operations. Among other benefits (like reducing exe-
cution time or load-balancing), these topologies can support failures in one or several
nodes without compromising the entire system. ANNEXS5 develops a complete case
study on cybersecurity, in the context of the Oil & Gas business sector, considering this
alternative.

Characterisation of defenders in CIP

» Single defender: In this case, the Cl is protected by a single defender, as it occurs in
all cases described in deliverables D5.1 and D5.2.

» Multiple defenders: ANNEX1 develops the case of multiple defenders who protect the
Cl, with two possible alternatives regarding the cooperation among them:

— Muiltiple uncoordinated defenders: In this case, there is no coordination at all
among defenders to protect the CI. It may be the case that each defender protects
their own premises or locations, or that they all defend the same site or compo-
nent. In ANNEX1, we provide details of such approach focusing on the case, in
which the defenders first implement their actions and, then, the attacker, having
observed them, performs his attack, which we called Sequential Defend-Attack
problems.

— Muiltiple coordinated defenders: Here, there exists a certain degree of coordina-
tion among all the defenders, usually in the form of resource sharing (technical or
human resources, tactics, intelligence, etc.). As an example, we can consider the
protection of an underground transport system against several threats, as speci-
fied in WP3, in which several private and (local, regional or national) government
security bodies could be involved, sharing duties and responsibilities. An interest-
ing issue here is to discern which benefits (if any) may the defenders obtain when
coordinating their actions and sharing their resources, compared to the case in
which they act uncoordinately. Further details about this work can be found in
ANNEX1.

Besides the number and coordinated action of defenders, another dimension that can
be considered in ARA models is the adoption of distinct defensive strategies, includ-
ing: preventive strategies to minimise threats; recovery plans to minimise the impact
of potential attacks; insurance plans to recover from potential losses, the use of false
targets to confound attackers; separation of underlying system elements to reduce cou-
pling and dependencies; addition of redundant components to improve resiliency and
availability; the adoption of multilevel defence strategies, or the launch of preventive
strikes to undermine the capacity and resources of potential attackers. Some of these
strategies have been considered in examples and case studies previously presented
in deliverables D5.1 and D5.2.
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Characterisation of attackers in CIP

» Single attacker: In this case, the Cl is threatened by a single attacker, as it occurs in
most of the cases described in deliverables D5.1 and D5.2.

» Multiple attackers: In this type of problems, an organisation needs to protect from
multiple threats.

— Multiple uncoordinated attackers: We assume that the relevant multiple threats
are uncoordinated, in the sense that different attackers do not make a common
cause, although the outcome of different types of attacks might affect each other
(see ANNEX1 for additional details).

— Multiple coordinated attackers: The main difference with respect to the previous
uncoordinated case is that the attackers will coordinately make their attacking
decisions, as they are interested in common targets (again, see ANNEX1 for ad-
ditional details).

Rationality level of agents

Inside the ARA framework, risks are derived from intentional actions of adversaries. Then,
the analysis supports one of the decision-makers, who must forecast the actions of other
agents. Typically, this forecast takes into account random consequences resulting from the
set of selected actions. Therefore, to solve the problem we must model the behaviour of
opponents, which entails strategic thinking.

ANNEX2 provides additional details about the work carried out to identify relevant options
to model the strategic thinking of opponents in the proposed ARA (specially, in the gener-
alised version which is the main focus of this deliverable). The different available options
can be summarised as follows. Of course, combinations of different opponent models in the
same CIP problem can also be considered.

» Non-strategic participants: The defender considers that the attacker does not follow
a strategy, and thus acts randomly. Based on past data and/or expert opinion, the de-
fender will elicit beliefs about the decision made by the attacker and deploy preventive
measures, consequently.

 Participants seeking Nash equilibrium: In this case, the attacker and the defender
are considered to have confronted each other many times before, and consequently
they can anticipate their preferences, as well as the probabilities that the opponent
selects specific actions according to them. We then compute the corresponding Nash
equilibrium for each possible random scenario, which leads us to obtain the optimal
actions that would be chosen by the attacker and their associated uncertainty. This
result can be used to inform the decision-making process of the defender.

 Participants with level-k thinking capacity: In this alternative, the defender assumes
that the attacker will select his action based upon a chain of reasoning of the form “I
know that she knows that | know...”. The depth of this chain of reasoning may be of k
levels, depending on how sophisticated the defender believes the attacker to be. For
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example, if the defender is non-strategic, then she is a level-0 thinker and chooses
randomly. If she chooses her action by assuming that the attacker is non-strategic,
then she is a level-1 thinker. A level-2 defender assumes that the attacker is a level-1
thinker, who assumes she is a level-0 thinker, and so forth.

» Participants seeking mirror equilibria: As implied above, level-k thinking can lead
to an infinite regress. However, we can overcome this problem if we assume that the
defender has some information (represented by probability distributions) to model her
own beliefs about the attacker intentions, along with information about the attacker
beliefs regarding the defensive strategies. In that situation, the defender is able to
develop a probabilistic model to predict the attacker’s actions (further details about this
approach can be found in ANNEX2).

* Prospect maximising opponents: There is abundant evidence showing that humans
often make choices that do not maximise expected utility, but other type of individual or
group prospects. In ANNEX2, we explain how to perform an ARA when the opponent
maximises prospect functions, using prospect theory Wakker (2010).

2.2 Methodology outline

The main contribution reported in this document is the design and specification of a general
ARA methodology suitable for capturing complex structural traits and behavioural patterns
of agents involved in CIP problems.

1. ANALYSE 2. EVALUATE
SCENARIO:

DEFENSIVE
STRUCTURE | e R ATEGIES
& SETTINGS

Figure 1: Overview of the main steps in the general ARA methodology for CIP.

Figure 1 shows the sequential procedure to follow this general ARA methodology to
model complex CIP problems, comprising the following steps:

1. Analyse the structure and characteristics of the underlying infrastructure: The first step
in our general methodology is to identify any relevant structural patterns and attributes
describing the underlying infrastructure to be protected. As we have seen in the previ-
ous section, this includes identifying a single or multiple locations to be defended, any
spatial or structural dependencies (such as a network structure) and defining which
structural elements (e.g. nodes or links in a network) are valuable.
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2. Evaluate and model defensive agents and strategies: After modelling the underlying
infrastructure, the next step is to identify the number of defensive agents involved in the
problem (single or multiple), as well as their likely defensive strategies. This includes
the identification of any coordinated strategies (for example, to defend a common valu-
able asset), as well as defining a probabilistic model that reflects the defender’s choices
regarding each possible protective measure to be adopted. In the same way, the model
can also accommodate more advanced rationality behaviours of defenders for whom
we may assume the capacity of anticipating their attack intentions (as we already in-
troduced in Section 2.1 above).

3. Assess and model attackers and their likely strategies: Like in the previous step, in
this case we model the number of attacking agents (single or multiple), the options for
coordinated actions against common targets, along with a probabilistic model to reflect
the likely preferences of attackers to choose among their available strategies. Likewise,
we can also assign more advance rationality levels to an attacker that may anticipate
preventive measures deployed by the defender.

4. Obtain the optimal attack options for opponents: Once the initial set up of our model
is completed, it is time to solve the ARA problem. To this aim, we select the most ad-
equate template to model each attacker and site, include any additional uncertainties
to better reflect the complexities of the real world scenario to be addressed and de-
fine any resource allocation constraints for the defender and the attacker. Finally, we
assign the objectives and utilities for the defender and the attacker, which define their
respective goals and steer their behaviour in the model.

With these inputs, we can now solve the associated probabilistic model using Monte
Carlo simulation to forecast the likely actions that will be pursued by the attacker (ran-
dom optimal attack).

5. Recommend best defensive options to counteract the attack: The results from the
previous sections will serve as an input for this final step. Once we have calculated
the most likely actions that the attacker will perform, considering the characteristics
and restrictions included in the ARA model, we can now assess the best strategies to
be adopted by the defender to countermeasure the attack and attain optimal resource
allocation.

Once we obtain this initial result, it is advisable to perform a sensitivity analysis to
better reflect the uncertainty associated to such results when reporting to the decision-
makers. As well, we can also consider the alternative of sharing risks among defenders
to further optimise the utilisation of available resources.

Thus, the main contributions of this general ARA model to solve more complex CIP prob-
lems can be summarised as follows.

» Coordination among multiple attackers and multiple defenders: As previously pre-

sented, one of the main advantages of this general ARA methodology is to allow for
the explicit consideration of coordinated actions among defenders or attackers, who
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may decide to joint efforts on common goals or targets. ANNEX1 summarises the dif-
ferent available options and outlines algorithms to simulate these kind of problems in
probabilistic computational models.

» Considering advanced rationality types for attackers and defenders: A contri-
bution of key importance to address complex CIP problems is to integrate advanced
strategic approaches that may be adopted by agents involved in the scenario, who try
to anticipate the opponents decisions and their impact on their own plans, as shown
above. In particular, the defender must account for some level of uncertainty about
the decisions made by the attacker and also model the attacker’s beliefs about defen-
sive measures and strategies. Further details about this approach can be found in
ANNEX2.

+ Allowing for more general interactions among different agents: ARA is a decision-
making methodology derived from influence diagrams Shachter (1986), a graphic rep-
resentation to formalise the problem to be solved, in which we depict the different
elements involved in the scenario and their relationships: agents, decisions, utilities
and uncertain outcomes (e.g. the result of an hypothetical attack). The basic ARA
models described in D5.1 and D5.2 can be generalised to allow for multiple dependen-
cies between decisions taken by agents in the model and their consequences, using a
more elaborated version of influence diagrams known as Biagent Influence Diagrams
(BAID). ANNEX3 provides further details about this approach, as well as an example
to illustrate its application.

2.3 Implementation guidelines

In order to be able to use the ARA methodology, present and discuss their inputs and output
results with the stakeholders, as well as enable them to interact with the models, a more
friendly interface seemed advisable. Therefore, the SECONOMICS Tool was implemented in
WP8, whose integrated Tool framework was described in D8.4. The ARA models developed
for the case studies in WPs 1 and 3 were implemented in Matlab and integrated within the
SECONOMICS Tool. The Tool enables the user to enter the model parameters in a very
intuitive way, presenting the obtained results in a graphical way together with a brief text
description. In spite of the fact that modifying the model parameters is a straightforward
task, adapting the models to arbitrary scenarios is a tougher process which would require
a deep understanding of such models. The Tool, together with the integrated models, were
evaluated at the SECONOMICS summit.

To conclude this section, we suggest a computational architecture to implement ARA
models, that are structured in the project’s Toolkit developed in WP8, following the general
methodology proposed in this document. The Matlab code implementing all calculations
underpinning this tool is also provided. The proposed architecture is composed of five main
modules, see Figure 2, featuring the following functionalities:

* Problem space: We need to specify the relevant characteristics of the adversarial

problem. Specifically, we need to define: (1) The problem topology, typically one
among those discussed in Section 2.1; (2) Which ARA model will be used to address
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Figure 2: Proposed computational architecture to implement ARA models following the proposed
general methodology.

the adversarial problem, either one of the basic templates or a more general model,;
and (3) The type and number of resources available to the defender, including their
associated costs.

 Attacker model: In this module, we define the relevant quantities associated with the
attacker’s problem, such as objectives, probabilities, preferences and possible attack-
ing strategies.

» Defender model: Here, we specify all quantities defining the defender’s problem, such
as probabilities, costs, consequences, preferences and utilities. Some of these inputs
will come from the simulation of the attacker’s problem, which must be specified, as
well. Different defence strategies should also be selected and specified at this stage.

» Model solver. This is the central module, which will take the models for the underlying
infrastructure, the attacker’s problem and the defender’s problem from the three previ-
ous modules, and will carry out the computational simulations to solve the probabilistic
model. The results will be the optimal solution for the attacker’s problem, and the op-
timal strategies and actions for the associated defender’s problem, to counterbalance
the attack.
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* Link to Graphical Interface (Toolkit). This module will provide the output to the Graph-
ical Interface in the Toolkit developed in WP8, summarising the results and findings of
the model, including numerical, graphical and textual information. This will facilitate the
interpretation of these results by stakeholders and decision-makers.
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3. Case Studies

In this section we offer a brief summary of the results and assessments derived from the
application of ARA models to the resolution of different case studies representing a variety
of CIP problems:

» The first two cases were solved in D5.2, using the basic ARA template models with
ad-hoc modifications to address their peculiarities. As a result, the need for a general
ARA model allowing the consideration of more general characteristics and problem
conditions was clearly identified.

» The last two cases present the application of the generalised ARA model to examples
in a cross-domain application and cybersecurity. These results illustrate implications of
future and emerging threats that can be considered and modelled with this generalised
approach. See ANNEX4 and ANNEXS5 for further technical details about the work
carried out in this regard.

Due to available time and resource constraints in the project, and given that the WP2
case study is strongly oriented to public policy aspects, the ARA case studies focus on
those of WPs 1 and 3. Besides, the cross-domain case study features a unique combination
of modelling requirements that makes it specially suitable to illustrate the capabilities of this
general ARA methodology to address complex scenarios.

3.1 Airport case study

The first study presented in D5.2 illustrated the problem of protecting the ATC Tower of a
small international airport from the assault of attackers who aim at hijacking the officers. The
detailed requirements for this scenario were provided in D1.3 and D1.4—Model Validation.

The resolution of this problem was modelled using the Sequential Defend-Attack-Defend
template introduced in Section 3.4 of D5.1. In this case, this template was applicable be-
cause we are considering the case of protecting the ATC Tower with defensive measures
and then, in the event of a successful attack, we assume that a special unit of national au-
thorities will be immediately called to take over the situation and try to reestablish the control
of premises and liberating the personnel as soon as possible.

In this case, it was possible to find an optimal solution with the defender’s problem within
the available budget using modest computing resources (a complete summary of numerical
results is available in Section 2.3 of D5.2). In addition, the model provides valuable insights
about the likely strategies that could be followed by attackers, especially that they may tend to
be cautious when additional protective measures are deployed, thus refusing to launch and
attack or sending at most a single agent. However, we had to expand the basic Sequential
Defend-Attack-Defend template to accommodate the additional complexities of this example,
in particular:

* Modelling additional sources of uncertainty, as it would not be credible that the de-
fender has precise information in advance about relevant factors such as the number
of attackers, possible casualties or the total costs on the defender’s side after an attack.
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» The problem has a multiattribute nature, in that multiple relevant consequences of var-
ious types had to be considered, including economic, social (in extreme cases, even
loss of human lives) and image consequences.

* In this example, the defender’s decision to deploy additional protective measures was
considered as fixed (deterministic) to simulate possible prospective scenarios. The
model could be expanded to consider some uncertainty on the attacker’s side when
evaluating this decision.

The general ARA framework presented in Section 2.2 can integrate all these additional
features in a more elaborated model.

3.2 Transport case study

The metro case study was specified in D3.3 and D3.4—Model Validation. This is an interest-
ing example with two additional sources of complexity beyond the basic models: authorities
must deal with more than one threat, and several premises can be affect by such threats. In
this case the approach to solve this problem was to follow an incremental modelling:

* First solve the problem for one threat (unorganised fare evaders) and one location
(single metro station).

» Then, repeat the model with a group of organised fare evaders in a single location.

* We join these two models, considering the case of both unorganised and organised
fare evaders in one station.

+ Finally, we expand the model to consider more than one threat (fare evaders and pick-
pockets) in a single station, and then extend this case for multiple stations.

Section 3 in D5.2 presents a complete summary of the setup of all aforementioned mod-
els, along with some numerical results. Further details for the final complex model can also
be found in ANNEXS3 of D5.2. In this example, the basic Sequential Defend-Attack template
introduced in D5.1 was utilised to solve the problem. However, like in the previous case it
had to be expanded to accommodate additional sources of complexity in this real case:

* The single uncertainty considered in the basic template is the result of the attack.
Nonetheless, in real-world scenarios like this we must take into account additional
factors, such as the fine imposed for fare evasion, the proportion of organised groups
of fare evaders, and the potential dissuasive effect of protective measures deployed by
the defender.

» Moreover, the basic template only allows us to consider a single threat, whereas in
this case the ideal approach is to combine the two possible threats (fare evaders and
pickpockets) in a single model.

+ Finally, instead of considered a single location at risk, it is more desirable (and realistic)
to take into account the simultaneous risk posed at different locations.
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All these limitations can be addressed in a straightforward manner with the general ARA
methodology proposed in this document. As a result, we can directly apply a model that
can manage all these intricacies from the start, avoiding the need to implement ad-hoc
expansions of the basic templates to tackle more advanced scenarios.

3.3 Cross-domain case study

In this example, we illustrate the applicability of the proposed general ARA methodology to
directly solve complex CIP problems. The cross-domain case study presented in this exam-
ple involves two apparently unrelated domains: the fossil fuel industry and cybersecurity.

Over the past years, the oil and gas (O&G) industry has progressively incorporated op-
erational technology (OT) solutions, especially for the automation and control of offshore
drilling premises. The benefits from the integration of OT and IT infrastructures in this busi-
ness domain are clear, including the centralisation of oversight and decision-making pro-
cesses, automating former manual mechanical activities, improving monitoring and telecom-
mand with better, near real-time sensors and, as a result, global performance optimisation
in their activities.

However, due to the gradual introduction of computational and networking resources
these infrastructures has also become a very attractive target for cyber-attackers Shauk
(2013), motivated by important economical and strategic interests that are at stake in this
domain. ANNEXS provides a detailed description of the many challenges faced by cyberse-
curity systems, as well as different methodologies to address them from distinct disciplines.
In this example, we illustrate the application of our general ARA methodology to tackle this
specific problem, putting special emphasis on the innovative contributions of this approach
to guide evidence-based decision-making processes.

We present here an overview of the five different steps for the application of the general
ARA methodology, introduced in Section 2.2. More complete details about this particular
case study can be found in ANNEXS. In this example, the scope of the model is an assess-
ment activity previous to the attack, providing assessment to underpinning incident handling
plans.

In the first step, we model the spatial or structural characteristics defining the Cl to be
protected. In this case, the infrastructure is considered to be a single offshore drilling in-
stallation, in which OT and IT have already been deployed. Regarding the second step, we
assume a single defender who will always be capable of detecting the attack, and will always
respond to it. On the other side (step 3 in our methodology), the attacker do not represent
a specific individual, but a generalisation of potential criminal organisations that represent
business-oriented threats, guided mostly by monetary incentives. It is assumed that the
attacker can commit a single attack, with several direct consequences for the ClI to be de-
fended, as well as several subsidiary consequences for the defender’s goals depending on
the risk treatment strategy that is finally selected. The combination of all these factors define
the defender and attacker utility functions, that they will seek to maximise.

The flexibility of the proposed general ARA methodology allows us to consider, from
the defender’s point of view, all decisions that will be taken by the attacker as uncertain
choices, which we can represent using a probabilistic model (e.g. based on information
about previous attacks or input from experts in cybersecurity). The model is also general
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enough as to consider a longer sequence of attack and defensive actions intertwined among
each other, should that be a case of interest in the future. We refer readers interested in the
complete details describing the definition of the ARA model to consult ANNEXS5 for additional
information.

Finally, once the set up of the model is finished, we can proceed with steps 4 and 5
in the proposed methodology. We then solve the defender’s problem by first simulating
the attacker’s problem to evaluate the likely attack actions that may be selected and their
possible consequences. This input is then used to conclude the best recommendations to
optimise the defender’s protective plans. Again, the complete list of tables summarising the
numerical results for this case study can be found in ANNEX5. The resulting assessments
concerning the defender’s strategy can be summarised as follows:

» The attacker decision will be strongly influenced by the defender’s strategy. The attack-
ers are more likely to commit an attack if they think the defender will accept the risk
(assuming all possible consequences of the attack) instead of sharing the risk (buying
insurance) or avoiding the risk at all (stop drilling operations). In general, perpetrating
an attack is more attractive in case the attacker strongly believes that the defender is
going to accept the risk or is going to continue drilling.

« If the defender thinks an attack will happen, then she would prefer sharing the risk (with
an insurance service) and stop drilling after the incident. In case she believes that there
will be no attack, she should accept the risk and continue drilling to maximise her utility.
Accepting the risk in case of no attack is better than sharing the risk, but accepting the
risk in case of attack is worse for the defender’s interests.

In the near future, it is very likely that cyber-attackers will soon target several fuel produc-
tion premises simultaneously. The motivations for these attacks may vary from undermining
production capacity to accessing sensitive data or strategic information that other malicious
agents with interest in this market could use in their own benefit. In response to these new
emerging risks, the generalised ARA methodology presented here can provide a invaluable
tool to address this challenge, as it can seamlessly incorporate complex structural features
and dependencies characterising the underlying Cl, as we briefly show in the following sec-
tion.

3.4 Addressing future and emerging threats

National security, and more specifically the oversight of critical infrastructures such as trans-
port, power grids or telecommunication networks has been a key concern for governments
and organisations around the world. Among all possible risks that may affect these infras-
tructures, terrorist attacks constitute one of the most worrisome threats for national and
federal authorities. An important consequence derived from this serious concern has been
to improve national security plans, including significant investments in protective responses
Haberfeld and von Hassell (2009).

This CIP problem represents a paradigmatic example of scenarios in which new risks
and threats may emerge in due course. Therefore, authorities and organisations in charge of
national security must be prepared to address these challenges. The general ARA method-
ology that we have introduced in Section 2.2 offers an adaptive and flexible tool to model

108



this kind of situations, providing valuable assessment to optimise the allocation of resources
to prevent possible threats while minimising costs for organisations implicated in the deploy-
ment of the defensive plan.

In this case study, we consider the protection of the southwest section of the Spanish
railway system against terrorist threats. Recent intelligence reports have alerted about the
activation of a dormant cell established in Seville, integrated within the city for years without
raising suspicion. In this regard, several Al-Qaeda members have been arrested in southern
Spanish towns over the last years (BBC News Europe, 2011, 2012; New York Post, 2014). In
this example, we consider the case in which terrorists intend to launch an attack in summer
against the railway system and its users, taking advantage of large population flows during
the vacation period along the Andalusian coast.

We summarise here the application of the general ARA methodology for this case study.
As we showed in Figure 1, the first step is to study the spatial and structural characteristics
of our problem scenario. Figure 3 depicts the section of the Spanish railway system con-
sidered for this case study. Figure 3a represents the actual map of the railway subnetwork
that will be the setting for our CIP problem, whereas Figure 3b provides a more schematic
representation for it. In this scheme, stations are represented as N, routes as r and critical
points to be protected as s. More precisely, the following sensitive areas are considered:
s131 represents Puente Genil’s viaduct in the Cérdoba-Malaga route; s132 represents a
tunnel in Antequera within the Cérdoba-Malaga route, and s451 stands for another tunnel in
Jerez de la Frontera, along the Seville-Cadiz route.

N2 N1
Cérdoba

Huelva
Seville
N3

Cédiz
N5

Malaga

(a) Network map. (b) Network scheme.

Figure 3: Railway network for the case study.

The second step is to proceed with the evaluation of possible defensive strategies. The
railway operator is a public company attached to the Spanish Ministry of Public Works, and
it is responsible for the management and security of the infrastructure. It must follow a
security budget that can be assigned to the allocation of defensive resources along the
network, according to certain constraints. Table 1 summarises the main characteristics of
available security measures, along with their estimated unit costs. For the security staff, we
have provided their unit monthly gross salaries. Further details in this regard can be found
in ANNEX4.
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Table 1: Deployment and type of security measures

Measure Station Track Critical points  Type  Unit costs (€)

X1 Metal detector Yes No No Static 6,500
X2 CCTV camera Yes No Yes Static 650

x3  Lamp posts No No Yes Static 3,000
X4 Fence units No No Yes Static 4,200
Xxs Security guard  Yes No Yes Mobile 2,600
xs Detection dog Yes No Yes Mobile 800

X7 Helicopter No Yes No Mobile 90,000

Mobile defensive measures can be used for recovery purposes in the event of a suc-
cessful attack. By ’recovery purposes’ we mean solely the detention of terrorists, thus not
considering those protocols that the government and the railway operator should carry out
after an attack. We shall typically use Monte Carlo methods to carry out the computations
needed to solve the defender’s problem.

The third step is to characterise possible attack strategies. Initially, terrorists could attack
any point in the network, trying to generate chaos, damage network elements and cause
the largest number of casualties. Attacks against railway targets entailing large number of
casualties have taken place all over the world since the beginning of the 21st century, as
shown in Table 2.

Table 2: Terrorist attacks on rail transport. Source: Haberfeld and von Hassell (2009).

Date Country Casualties
2001/8/1 Angola > 250
2004/3/11 Madrid, Spain > 190
2005/717 London, UK > 50
2006/7/11  Mumbai, India > 180
2007/2/117 Pakistan > 60

However, to simplify this example we consider that the attacker’s strategy can only com-
prise several options, summarised in Table 3.

Table 3: Type of attacks and their consequences

Attack Description Lives Fixed assets Station Train Reputation
ai Bomb in station Yes Yes Yes — Yes
a Bomb in train (station) Yes Yes Yes Yes Yes
as Bomb en route Yes Yes — Yes Yes
as WMD in train Yes — — — Yes

Finally, we can solve the adversarial problem dealing with the defender’s problem, moving
to the attacker’s problem when required to calculate the information about his probabilities
and preferences that will be used as an input for the defender’s problem model. This cor-
responds to steps 4 and 5 in our general ARA methodology. To perform these simulations,
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we must consider all pairs of feasible combinations—those fulfilling the resource alloca-
tion constraints—and the attack strategies described in full detail in ANNEX4. Should too
many combinations need to be considered, we could rely on alternative implementations, as
e.g. genetic algorithms, see Goldberg (1989).

In this way, we have demonstrated how this general ARA methodology can address future
and emerging threats applied to the specific domain of national security, choosing the best
protective strategies against terrorist attacks who target a railway network. In this case, the
defender’s aims are: (a) Deter terrorists; (b) Minimise their chances of succeeding in their
attack; and (c) Reduce as much as possible the impact of a hypothetically successful attack.

Likewise, additional complications could also be incorporated to this procedure, in or-
der to consider additional threatening dimensions. For instance, in this example we have
explicitly disregarded possible cascading effects resulting from terrorist actions, since we
have considered that the impact on one target will not propagate along the network. How-
ever, in other types of CIP protection scenarios (e.g. communication or energy networks),
these conditions may not hold and we could apply more general approaches to address this
complexity, as suggested in Salmeron et al. (2004) or Holmgren (2006).
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4. Conclusions

In this deliverable we have presented a generalised ARA methodology to create models that
better reflect the characteristics and traits found in real-world CIP problems. This general
methodology is derived from conclusions of the application of the basic ARA templates, in-
troduced in D5.1, to solve the case studies presented in D5.2. The complex requirements
exhibited by these case studies, compiled in WP1, WP2 and WP3, demanded an ad-hoc ex-
pansion of the basic ARA templates to accommodate certain advanced conditions (like mul-
tiple uncertain factors, multiple threats to be considered simultaneously or multiple premises
to be protected from threats).

As a consequence, the development of this general methodology offers a richer and more
flexible framework to undertake the analysis of CIP problems entailing advanced features,
such as:

* Integrating spatial and structural characteristics of the underlying critical infrastructure
to be modelled, as well as the identification of valuable spots and premises, or redun-
dancy elements to improve resiliency against attacks.

» Consideration of multiple defenders and multiple attackers, who share interest in pro-
tecting or damaging the same targets and are willing to coordinate their actions and
share risks.

* Modelling advanced strategic capacities of defenders and attackers, including the ca-
pacity to try and anticipate the opponent’s decisions.

Two new case studies introduced in Sections 3.3 and 3.4 show the applicability of this
general methodology to solve CIP problems involving complex scenarios. In the same way,
we illustrate the capabilities of this methodology to address additional emerging threats that
might be identified in future analyses, without implying any disruption or additional modifica-
tion in the modelling process.

Finally, implementation guidelines are also provided in Section 2.3 to facilitate the devel-
opment and integration of the proposed model in the software tools created in WP8. There-
fore, this general methodology constitutes the main outcome of WP5 for the SECONOMICS
project, paving the way for the assessment of decision-makers facing the challenge of opti-
mising the allocation of available resources for the protection of critical infrastructures in a
wide variety of circumstances.
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Table of acronyms

Acronym Description

ARA Adversarial Risk Analysis

APT Advanced Persistent Threat
ATC Air Traffic Control

BAID Biagent Influence Diagrams
CCTV Close Circuit Television

Cl Critical Infrastructure

CIP Critical Infrastructure Protection
CNI Critical Network Infrastructure
CS Control System

IT Information Technology

MAID Multi-Agent Influence Diagrams
0&G Oil & Gas

oT Operational Technology

WMD Weapon of Mass Destruction

Glossary

Attacker (He): A participant willing to perform disruptive actions to damage the utility of
components of a CI.

Critical Network Infrastructure: A Critical Infrastructure composed of nodes and links
connecting the nodes.

Defender (She): A participant adopting protective measures to preserve the utility of com-
ponents of a Cl, usually constrained by resource allocation restrictions.

Influence diagram: A formal graphical representation of a decision-making process in a
compact schema, illustrating the agents involved in the process, decisions made by partici-
pants, potential outcomes derived from such decisions and utility functions.

Level-k thinking opponent: A participant (attacker or defender) who is assumed to antic-
ipate the strategy that her adversary will adopt to try to fulfil her goals. The k level refers
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to the depth of the strategic plan, i.e. number of attack/defence actions anticipated by such
participant.

Link: In the context of CNI, a link is any physical or functional connection between two
nodes in the network. These connections may or may not have a utility for the defender.

Monte Carlo simulation: A simulation technique to solve probabilistic models, generating
random samples from the target probability distribution that is the outcome of the model in a
computationally efficient way.

Nash equilibrium: A formal rule to describe the behaviour of two or more players in a
noncooperative game. In such a context, participants reach Nash equilibrium when each
one knows the optimal strategy of all other players, and none of them can benefit from
changing their strategy while the other players keep their strategies unaltered.

Node: In the context of CNI, a node is any physical or functional asset connected to other
assets in the infrastructure layout by means of one or more links.

Non-strategic player: A participant in a game who does not perform rational actions
based on a strategic plan. This corresponds to a level-0 thinking opponent.

Optimal CIP: Best strategic combination of defensive decisions that a defender can make
to minimise the damage on the utility of the Cl assets, according to resource allocation
restrictions.

Random optimal attack: Best offensive action that an attacker could perpetrate on a Cl,
assuming that he does not follow a strategic plan.

Resource allocation constraints: Set of limitations and restrictions that attackers and
defenders must fulfil when using available resources to meet their corresponding goals.

Sequential model: In ARA, a model that considers a strict order and number of actions
performed by participants in a specific scenario.

Strategic player: A participant in a game who performs rational actions according to a
preconceived strategic plan. This corresponds to a level-k thinking opponent.

Threat: Any risk represented for the utility of any component in a Cl, generated as a result
of disrupting actions that may be undertaken by an attacker.

Utility (function): The value of components of a Cl as perceived by participants in an ARA
model.
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Introduction to the General Methods for Security Risk Anal-
ysis Papers

In D5.3" we provide a risk analysis methodology for security resource allocation in general critical
infrastructure protection (CIP) problems, with complex interactions between the intervening partici-
pants, who aim at adversarial objectives. We provide security prescriptions for one or more of the
participants, generally called (She) the Defender, in their effort to defend themselves against multiple
threats created by the adversaries called (He) the Attacker. Part of these attackers may coordinate
their actions to attain better results. We consider that valuable targets may be distributed across vari-
ous locations. Both the defenders and the attackers may dynamically reallocate, if necessary, part of
their resources over different targets. We further assume that all participants have limited resources
and are subject to other general constraints as e.g. political, economical, logistic, legal, etc.

The methodology developed in D5.3 can be regarded as a generalisation of that introduced in
D5.1 and D5.2. D5.1 provided five Adversarial Risk Analysis (ARA) templates for security policy
making. For each model, we included a simple motivating example and a basic numerical illustration.
Those models were suggested as basic building blocks for general CIP risk analysis problems, as
illustrated in D5.2. We formulated there several incumbent problems of the airport and metro case
studies, from WP1 and WP3, respectively, also outlying the solution for the grid case study in WP2.
We used the ARA framework, adapting the basic templates as required to deal with the specific
features and the inherent complexity of such case studies. The proposed methodologies could be
applicable to other CIP problems with similar features and/or underlying structures. However, such
case studies suggested a number of issues that require generalisations. Furthermore, the models
developed are flexible enough to allow their extendability to cope with future and emerging threats as
e.g., the occurrence of cyberattacks in the airport domain or in the Gas & Qil sector. Such extensions
would possibly require additional modelling advancements to support potentially novel features in
the model as, e.g., the assessment of certain parameters, probabilities, preferences or defence and
attack strategies.

In essence, as described in the deliverable body, the general approach proposed here consists
of deploying one of the previous models over each of the targets within the critical infrastructure,
relating them through resource constraints and value aggregation. From a procedural point of view,
the methodology depicted graphically in the deliverable body could be implemented according to the
following steps:

1. Problem structure.

i. Choose the underlying CIP topological structure.
ii. Determine the number of defenders and their eventual coordination.
iii. Determine the defensive strategies available.
iv. Determine the number of attackers, their rationality and eventual coordination.
v. Determine the relevant ARA template model for each attacker and site.
vi. Expand each of the templates for additional uncertainties.

vii. Define resource constraints for the Defender(s) and the Attacker(s).

Contributions provided by D. Rios, J. Cano, F. Ortega, E. L. Cano, J. M. Moguerza, A. Alonso (URJC), A.
Couce, S. Houmb (SNOK). A. Schmitz (ISST) provided input concerning computational integration within the
tool. J. Williams (Durham) revised the document technically. Discussions with J. Rios (IBM Research) and D.
Banks (Duke) are gratefully acknowledged.



2. Problem assessments.

i. Assess the Defender’s objectives, probabilities and utilities.

ii. Assess the Attacker’s objectives, (random) probabilities and (random) utilities.
3. Problem evaluation

i. Simulate from the Attacker’s problem to forecast his actions.
ii. Optimise the Defender’s problem to obtain the optimal resource allocation.
iii. Perform sensitivity analysis.

iv. If necessary, share risks among defenders.

The general methodology required the following developments outlined in the first three appen-
dices:

* Annex 1. Enhancement of Sequential Defend-Attack Models. Considers the possibility that
several Attackers (with various degrees of coordination) and/or several Defenders (also with
various degrees of coordination) and/or several targets (with various topological layouts) are
present in the CIP problem at hand. We deal with each of these issues one at a time, stemming
from the basic sequential Defend-Attack template. Combinations of the three themes are based
on the previous ideas.

* Annex 2. Modelling Opponents in Adversarial Risk Analysis. Considers that the Attackers may
have a different rationality to that entailed by the expected utility paradigm. We consider random
attackers, Nash equilibria seeking attackers, level-k thinkers, mirror equilibria seeking attackers
and prospect maximisers. We also consider uncertainty about such paradigms through a model
mixture approach. We use the basic simultaneous Defend-Attack template as starting point.

» Annex 3. Adversarial Risk Analysis for Biagent Influence Diagrams. Considers that the At-
tackers and Defenders engage in much more involved interactions than those in the five basic
templates, possibly across several time periods. We define a class of general interactions
through Biagent Influence Diagrams and describe how to handle such problems, using rele-
vance concepts and showing that, indeed as forecasted in Deliverables 5.1 and 5.2, we may
use our five templates as basic bricks for general security risk models.

The outlined methodology is then tested in two additional annexes which complete the range of case
studies from Deliverable 5.2.

* Annex 4. Optimal CIP with Network Structure The general methodology is applied to a problem
with network structure, specifically to railway counterterrorism. The elements to be protected
are nodes, links and what we call link hotspots. Different types of resources and ARA models
are used at different elements. Beyond illustrating the feasibility of the general methodology;,
we deal with a major threat for an essential public infrastructure and we show how to deal with
networked infrastructures as in WP2.

* Annex 5. A Graphical Adversarial Risk Analysis Model for Oil & Gas Cybersecurity. The gen-
eral methodology is applied to a cybercontrolled critical infrastructure. Several defense stages
(including insurance) and several attackers are considered. Beyond illustrating the feasibility
of the general methodology, we address important threats over critical infrastructures for the
Oil & Gas energy sector, which entails unusual settings and requirements, and illustrate the
multistage and multiattacker aspects of our approach.
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With these, we have provided the suggested general methodology for CIP risk analysis, focusing
on the defence resource allocation strategic-tactical problem. The methodology essentially goes
through three stages of problem structuring, problem assessment and problem evaluation, and aims
at supporting a group of defenders in deciding optimal defences when protecting a CIP against one
or more attackers.

Allin all, we have provided an innovative, rigorous and powerful methodology for security resource
allocation in CIP. The methodology nicely integrate with the rest of SECONOMICS technical WPs as
follows:

» WP4 would provide advice about the objectives of Attackers and Defenders in their interaction,
as well as about the Defender concerns and risk perceptions. These would be crucial elements
in the (random) utility model of the Attacker and the utility model of the Defender.

» WP6, of a more strategic nature, would be used to decide the security budget available as well
as an orientation about the effectiveness of various countermeasures.

+ WP8 would implement the models developed here, as it already does with the most basic
ones. As described in the deliverable body, we suggest a computational architecture to imple-
ment ARA models, that are structured in the project’s Toolkit developed in WP8, following the
general methodology proposed in this document. The proposed architecture is composed of
five main modules: (1) Problem space, specifying the relevant characteristics of the adversar-
ial problem; (2) Attacker model, defining the relevant quantities associated with the attacker’s
problem; (3) Defender model, similarly for the defender’s problem; (4) Model solver, the central
module, carrying out the computational simulations to solve the probabilistic model; and (5) Link
to Graphical Interface (Toolkit), providing the output to the Graphical Interface in the Toolkit de-
veloped in WP8, summarising the results and findings of the model. WP5 also contributed
with the tool tuning, specifying and explaining the meaning and suggested values of the model
parameters implemented. WP5 implemented Matlab code for the various models developed
throughout the SECONOMICS project, as e.g. the basic template models introduced in D5.1;
a model for the protection of the ATC Tower in the airport case study; or models for the simul-
taneous protection against pickpocketing and fare evasion in the metro case study in D5.2.

The cases performed within WP1, WP2 and WP3, and others beyond, show that ARA indeed provide
a powerful and well founded approach for security resource allocation.



Enhancements of Sequential Defend Attack Models

Adversarial Risk Analysis has been introduced as a framework to deal with risks derived from the
intentional actions of adversaries. The typical use is in security resource allocation. The analysis
supports one of the decision makers, which we designate the Defender, who must forecast the ac-
tions of the other agents, taking account of random consequences resulting from the set of selected
actions. Stemming from the basic Sequential Defend-Attack template model, we provide several vari-
ations which bring further realism to it. First we consider the case in which the Defender needs to
face several attackers, which might be coordinated or not. We then consider the case in which there
are several Defenders facing a single Attacker. Multiple attacker vs multiple defender problems may
be seen in the light of earlier approaches. Finally, we consider the case in which several targets need
to be protected.

1 Introduction

Recent applications in counterterrorism, cybersecurity, auctions and competitive marketing are driv-
ing renewed interest in developing practical tools and theory for analysing the strategic calculation of
intelligent opponents who must act in scenarios with random outcomes. We use the term Adversarial
Risk Analysis (ARA) to describe approaches in which the solution is based upon an explicit Bayesian
model of the capabilities, probabilities and utilities used by the opponent in his analysis. For various
concepts, methods and applications see Rios Insua et al. (2009), Banks et al. (2011), Rios and Rios
Insua (2012), and Razuri et al. (2013).

The aim is to support one of the players who will use a decision analytic approach to solve her
decision-making problem. To this end, she needs to forecast the actions of the other agents and,
based on her own choice, the outcomes which she and her opponents will receive. This can be
viewed as a Bayesian approach to game theory, and was proposed, non-constructively, by Kadane
and Larkey (1982), Raiffa (1982) and Raiffa et al. (2002). The approach has been criticised by
Harsanyi (1982) and Myerson (1991), among others. From a practical standpoint, the main obstacle
in implementing this approach to conflict situations has been the lack of explicit mechanisms which
allow the supported decision maker to encode her subjective probabilities about all components in
her opponents’ decision making. In earlier work, we have focused on relatively simple models, which
serve as templates for complex models. Stemming from them, we explore here a number of varia-
tions which may bring further model realism: the presence of several attackers and/or several and/or
defenders and/or several targets to be protected.

We choose the Sequential Defend-Attack Model as our initial template, which we outline in Section
2. Then, we address in Section 3 the case in which we need to protect one defender from multiple
attackers. We distinguish between the cases in which the attackers are coordinated or not. We then
consider in Section 4 the case in which several defenders face a single attacker, again distinguishing
between coordinated and uncoordinated defenders. Multiple attacker vs multiple defender problems
may be seen in the light of earlier approaches. We finally describe in Section 5 the case in which
several targets need to be protected. We end up with a discussion.

2 The Sequential Defend-Attack Model

We start by considering the Sequential Defend-Attack model, to which we shall add complexities in
stages. The Defender first chooses a defense and, then, having observed it, the Attacker chooses
an attack. This corresponds to a Stackelberg game, see Aliprantis and Chakrabarti (2000), and have
been studied in detail in the security domain from a classical game-theoretic perspective by Bier and



Azaiez (2009), and Brown et al. (2006). To simplify the discussion, we assume that the Defender
(she) has a discrete set of possible defenses D = {d1, d,, ..., dn} from which she must choose one.
Similarly, the Attacker (he) has his set of possible attacks A = {a4, ay, ..., ax} to choose one from.
We shall also simplify the problem by assuming that the only uncertainty deemed relevant is a binary
outcome S € {0, 1} representing the failure or success of the attack. Finally, for both adversaries, the
consequences depend on the success of this attack and their own action.

Figure 1 depicts the problem graphically. On one hand it shows a coupled influence diagram,
an influence diagram for each participant with a shared uncertain node and a linking arrow. The
influence diagram shows explicitly that the uncertainty associated with the success S of an attack
is probabilistically dependent on the actions of both the Attacker and the Defender: S|d,a. Recall
that arcs into a utility node represent functional dependence, see Shachter (1986). Thus, the utility
functions over the consequences for the Defender and the Attacker are, respectively, up(d, S) and
ua(a, S). The arc in the influence diagram from the Defender’s decision node to the Attacker’s reflects
that the Defender’s choice is observed by the Attacker. We also show a game tree (with only two
actions per adversary: m = k = 2) for the problem, reflecting its sequential nature. Note that there
are two utility values, for the Attacker and the Defender, at the tree terminal nodes.

(a) Influence diagram (b) Game tree (m=n = 2)

We weaken the common knowledge assumption required by the standard game theoretic ap-
proach: the Defender does not actually know (pa, us), which model the beliefs and preferences of
the Attacker. We consider the Defender’s problem as a standard decision analysis problem: the De-
fender’s influence diagram in Figure 2, no longer has the hexagonal utility node with the Attacker’s
information and his decision node is perceived as random variable. Similarly, her decision tree de-

notes uncertainty about the Attacker’s decision by replacing with @ and including a reference
only to the Defender’s utility function. By looking at the influence diagram, note that in order to solve
her decision problem, suppose the Defender has already assessed pp(S|d, a) and up(d, S). She
also needs pp(A|d), which is her assessment of the probability that the Attacker will choose attack a,
after observing that the Defender has chosen defense d. This assessment requires the Defender to
analyze the problem from the Attacker’s perspective, possibly as we describe.

First, the Defender must place herself in the Attacker’'s shoes, and consider his decision problem.
Figure 3 represents the Attacker’s problem, as seen by the Defender. We assume that the Defender
analyzes the Attacker’s problem considering that he is an expected utility maximizer. Thus, she will
use all the information and judgment available she can about the Attacker’s utilities and probabilities.
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(a) Influence diagram (b) Decision tree (m =n = 2)

To find pp(A|d), she should first estimate the Attacker’s utility function and his probabilities about suc-
cess S, conditional on (d, a), and consequently compute the required probability. However, instead
of using point estimates for p, and u, to find the Attacker’s optimal decision a*(d) as in the standard
game-theoretic approach, the Defender’s uncertainty about the Attacker’s decision should derive from
her uncertainty about the Attacker’s (p4, ua), which we describe through a distribution F. This, in turn,
will induce a distribution on the Attacker’s expected utility 14(a, d). Thus, assuming the Attacker is an
expected utility maximizer, the Defender’s distribution about the Attacker’'s choice, given her defense
choice d, is
pp(A =a|d)=Pela=argmaxW(d, x)], Vac A,
xeA
where
Va(d,a) = Pa(S =0]d,a)Ua(a, S = 0) + P4(S =1|d,a)Ua(a, S = 1)

for (Pa, Ua) ~ F. She can use Monte Carlo simulation to approximate pp(A|d) by drawing n samples



{ (P}, uhy) }7=1 from F, which produce {4, }'., ~ W4, and approximating pp(A = a|d) by

N #{a= i(d,
Po(A = ald) = {a argma’;x“ Yl X)}, Vac A.

Once the Defender has completed these assessments, she can solve her problem. Her expected
utilities at node @ in Figure 2 for each (d,a) € D x A are

d,a)up(d,S =0)+pp(S = 1

Yp(d,a)=pp(S =0 d,a)up(d, S = 1).

Then, her estimated expected utilities at node @ foreach d € D are

k
Yp(d) = vp(d, a)bp(A = aj|d).

i=1

Finally, her optimal decision is d* = arg max,.p JD(d).

Note that, in terms of classic game theory, the solution d* for the sequential game need not
correspond to a Nash equilibrium. Assume there would be a third party who knows the Defender’s
true (pp, up) and her beliefs F about the Attacker’s utilities and probabilities, as well as the Attacker’s
true (pa, ua) and his beliefs G about the Defender’s. That party would then be able to predict the
game, identifying the decisions chosen by each player. However, this omniscient prediction would
not be the Nash equilibrium computed based on the true (pp, up) and (pa, us). Since the players lack
full and common knowledge, their choices are unlikely to coincide with those made in the traditional
game theory formulation.

This approach requires the assessment of (UA, Pa(s|d, a)). With respect to the random probabil-
ities, we could base them on the corresponding assessments for the Defender, pp(s|d, a), possibly
as follows:

« If Sis discrete, P4(s|d, a) could be modeled as a Dirichlet distribution with mean pp(s|d, a) and
variance accounting for the incumbent uncertainty. In particular, when S is binary, Pa(s|d, a)
could be modeled as a beta distribution.

+ If S is continuous, then Px(s|d, a) could be a Dirichlet process with base distribution pp(s|d, a)
and concentration parameter §, expressing our uncertainty about such base, see Ferguson
(1973).

In both cases, when lacking information, we could set a sufficiently large value for the variance or
concentration parameter, respectively.

For the random utility model, the Defender must study whatever information she has about the
aims of the attackers, see Keeney (2007), Keeney and von Winterfeldt (2011) or Keeney and von Win-
terfeldt (2010) for a detailed treatment of interests, values and objectives of terrorists. Based on their
suggestion, we could view as reasonable a model based on a weighted measurable value function,
as in Dyer and Sarin (1979). To take into account risk attitudes, we could appeal to the relative risk
aversion concept, see Dyer and Sarin (1982), and assume risk proneness on the attackers. Finally,
the uncertainty would be reflected by distributions over the weights and risk proneness coefficients.
Wang and Bier (2013) provide another approach for assessing adversary preferences using ordinal
judgments and the probabilistic inversion method, see Kraan and Bedford (2005).



3 Multiple attackers vs one defender

In the Sequential Defend-Attack model, and, more generally, in any adversarial situation, it is entirely
plausible to face more than one Attacker, and these opponents may have different sets of resources,
different goals and different degrees of cooperation. For example, governments must simultaneously
defend against state-sponsored terrorism, franchise terrorists and solitary actors; similarly, police
must defend against vandals, gangs, and organised crime. Within a corporate competition environ-
ment, a company may enter into a bidding against two or more competitors, or an organisation enter
a marketing campaign to improve its market share. We distinguish between the cases in which the
attackers are coordinated or not.

3.1 Uncoordinated attackers

We study first the case of a defender which faces several uncoordinated attackers. As an example,
consider the urban police in a city which needs to face drug dealers, pickpockets, car thieves, house
thieves and so on, and suppose that each class of delinquents operates in a manner uncoordinated
with the others.

Although there are several variants of the problem, that shall be outlined below, to fix ideas we
shall use the version illustrated by the multiagent influence diagram in Figure 4, see Koller and Milch
(2003) for further details on MAIDs. It is a case in which various attacks have detrimental effect over
the results for the defender. For example, in the motivating case, the police would need to use its
limited human resources to face simultaneously all types of delinquents, with the ensuing detrimental
effect.
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Figure 4: Multiagent influence diagram for a bithreat problem.

We, thus, consider a Defender, D, who needs to deploy defensive resources d € D to face m
uncoordinated attackers A4, ..., An. These observe her decision, and, respectively, make attacking
decisions a; € A;, i = 1,...,m. The interaction between D and the A;’s through their respective
decisions d and a;, leads to random results S; € S;, which depend on all decisions. The Defender
faces multiattribute consequences cp, which depend on her defense effort d and the results sy, ..., Sp.
She then gets her utility up. Each attacker will get his multiattribute consequences c,,, which depend
on his attack effort a; and the result s;. He then gets his utility us,. Note that, in this formulation, her
probability for the success of attack a, does not depend on whether the other attacks were successful,
but only upon which choices the other Attackers made. This is a reasonable approximation when the
Defender is highly resourced and the Attackers do not coordinate. For example, the outcome of

9



one burglary attempt is probably not affected by whether or not other burglars are successful, but
it may be affected by the fact that other people choose to burgle; i.e., if a neighborhood sees a
rash of attempted robberies, successful or not, then police increase their surveillance, lowering the
chance of success. But if the Defender is not sufficiently well resourced, this version of the problem is
less plausible: an understaffed police department means that a successful attack diverts resources,
increasing the chance that other attacks will be successful. Similarly, if Attackers coordinate, so that
multiple burglaries occur simultaneously, this may increase the chance of success burglary for all.

The Defender aims at finding her optimal defense strategy d*. The consequences for the De-
fender are evaluated through her utility up(d, s1,...,Sm). Assuming conditional independence be-
tween the outcomes S; of different attacks, given the defensive resources d and the implemented
attacks a;, she needs to assess the probability models pp(si|d, a4, ...,an), i = 1,...,m, reflecting
which outcomes are more likely when attackers A; launch attack a; and defensive resources d have
been deployed. She gets her expected utility given the attacks, integrating out the uncertainty over
the outcomes of the attacks:

¢D(d\a1,...,am)=/~-~/uD(d,s1,...,Sm)pD(s1|d,a1,...,am)‘.-pD(sm|d,a1,...,am)ds1 wodspy. (1)

Suppose that the Defender is able to build the models pp(aj|d), i = 1,..., m, expressing her beliefs
about which attack will be chosen by the i-th attacker after having observed the defense d. Our
assumption of uncoordinated attacks is reflected on the conditional independence of aq, ..., an given
d. Then, D may compute

p(d) = / / ¢p(dlas, ..., am) pp(ar|d) - po(am|d) dar ... da,

and solve

max Yp(d)

to find her optimal defense resource allocation d*.

In order to solve her problem, the Defender needs to assess up(d, S1, ..., Sm), the distributions
pp(sild, a4, ..., am) and the distributions pp(a;|d), i = 1,...,m, which are the only nonstandard as-
sessments in her formulation. To obtain them, the Defender needs to put herself into the shoes of
each attacker, and solve their corresponding problem separately, as they are uncoordinated. For in-
stance, for the problem faced by attacker A4, assuming that he is an expected utility maximizer, she
would need his utility us, (a1, s1) and probabilities p4,(s1|d, a1). Then, she would solve

ay(d) = arg maX/UA1(a1,S1)PA1(S1!d,a1)d31-
aieAy

However, the Defender lacks knowledge about us, and ps,. Suppose we may model her uncertainty

about them through random utilities and probabilities (UA1,PA1). Then, we could propagate such

uncertainty to obtain the random optimal attack, given her defense d

Ai(d) = argmax [ U, (ar, 1) P, (s1[d. a1)dst,
aic€Aq

and, consequently, obtain pp(a1|d) = Pr(A%(d) < a1), which may be approximated through simulation
by sampling from the random utilities and probabilities, finding the corresponding optimal attacks and
using the Monte Carlo fraction of samples with the relevant optimal attacks as in Section 2. A similar
scheme would be implemented, in parallel, for the other attackers, A, ..., An, leading to estimates
pp(aild), i =2, ..., m, of the required probabilities.
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As we said, the approach may be generalized in several ways. Sometimes it is reasonable to
suppose that uncoordinated attacks have independent effects. For example, this would occur if one
Attacker were a murderer and the other Attacker were a burglar, and if the police department had dif-
ferent divisions to handle those crimes, with little interaction between various sections. The outcome
for the attempted murder would not affect the outcome for the attempted burglary. This is shown in
Figure 5a. Then, we could rewrite the probability model pp(s1|d, a1, ...,am)---pp(Sm|d, a1, ..., am) in
(3.2) as

po(s1ld,a1)- - pp(Sm|d,am),
and proceed in a similar fashion. Here, the Defender’s action would be to decide how much money
to allocate to the Homicide Unit and to the Burglary Unit.
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Figure 5: Some generalizations for the bithreat problem.

Alternatively, it could be the case that there is some cascading effect between the results of the
attacks, see Figure 5b. This pattern is apparent in franchise terrorism, suicide bombings, school
shootings, and other contemporary threats, and corresponds to very weak coordination. A slightly
stronger form of coordination occurs if the Attackers agree to order their decisions, so that A1 chooses
first, A, chooses second, and so forth, For example, assuming that m = 2, it could happen that s,
affects s4, so that pp(s1|d, a1) pp(s2|d, a2) in (3.2) becomes

pp(s1]d, a1, S2) pp(s2|d, az).

Under this assumption, the general scheme required to estimate pp(a;|d), i = 1,...,m cannot be
implemented in parallel, but requires some sequentiality, as easily generalised.

As a final variation, it could be the case that there is just one random outcome S which depends
on the decisions d of the Defender and ay, ..., an, of the various Attackers. A typical example would
be within an auction in which D is the Auctioneer designing the auction mechanism and A; places his
bid in the designed auction, with S being the result of such auction.

3.2 Coordinated attackers

When multiple opponents coordinate their attacks, the ARA for the Sequential Defend-Attack game
must take account of the kind of cooperation that exists. We have seen examples of partial coordi-
nation in attack cascades inspired by previous attacks and in turn-taking in certain games. But often
attacks are strongly coordinated and explicitly strategic. Important examples include:
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* The Spanish government must defend its people against the joint operations of the Basque
terrorist organisation ETA, the 'Ndrangheta and the Colombian narco mafia (http://www.terra.
com.mx/articulo.aspx?articuloid=578597).

* Iran is the subject of coordinated economic sanctions imposed by many other (mostly Western)
nations.

+ Exxon must compete in a world market in which critical price controls are imposed by the
OPEC.

Combating cooperative opponents is common, and arises in terrorism, international relations, busi-
ness, and many other circumstances.

Our defender needs now to protect from the coordinated actions of attackers. We thus consider
now the case of a Defender, D, who needs to deploy defensive resources d € D to face m coordi-
nated attackers A4, ..., An. These observe her decision, and, coordinately, make attacking decisions
a; € A;, i =1,...,m. The interaction between D and the attackers A;, through their corresponding
decisions d and a;, leads to a random result S; € S;. The Defender faces multiattribute consequences
¢p, which depend on her defense effort d and the results s, ..., S;. She then gets her utility up.

When there is strong coordination, one can view the problem as one in which there is a single
Attacker. The challenge is to determine the group utility function that represents the shared interest of
the Attackers. Group utilities combine the individual utility functions of each Attacker. Each attacker
will get his multiattribute consequences c,,, which depend on his attack effort a; and his result s;.
Then the group of attackers get their (group) utility ug, which somehow combine their individual
utilities. Keeney and Raiffa (1993) and Rios Insua et al. (2008) provide discussions concerning group
utilities. Note that many of the bargaining algorithms, see Thomson (1994) may be seen in the light
of maximising a group value function, aggregating individual value functions.

As before, the Defender aims at finding her optimal defense strategy d*. She evaluates conse-
quences through her utility up(d, s, ..., Sm).- She needs to assess the probability model pp(sy, ..., Sm|
d,aq,...,am), i =1,...,m, reflecting which outcomes are more likely when the attackers launch their
coordinated attacks a; and defensive resources d have been deployed. She gets her expected utility,
given the attacks, integrating out the uncertainty over the outcomes:

¢D(d\a1,...,am)=/---/UD(d,s1,...,sm)pD(s1,...,sm]d,(a1,...,am))ds1 ...dsp.

Suppose now that the Defender is able to build the model pp(aq, ..., am|d), expressing her beliefs
about which (coordinated) attacks will be chosen by the attackers after having observed d. Then, she
may compute

wD(d)=/---/¢D(d|a1,...,am)pD(a1,...,am|d)da1 ...dam,

and solve

max Yp(d)

to find her optimal defense resource allocation d*.

Again, the assessment of pp(a, ..., am|d) is nonstandard. We assume that the attackers are a
(group) expected utility maximizer, see Keeney and Raiffa (1993). Assuming that their group utility
is ug((a1,-.-,am), (s1, ..., Sm)) and their group probabilities are pg(s1,...,Sm|d, a1, ..., am), then the
Defender would solve for

a*(d)=  argmax /uG((a1,...,am), (81, ., Sm))Ps(S1s ..., Sm|d, @1, ...,am)dSq ...dsp.
(@1,e-am)EAL X Am
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However, the Defender lacks knowledge about ug and pg. Suppose we may model her uncertainty
about them, through random utilities and probabilities (UG,PG), and propagate that uncertainty to
obtain the random optimal attack, given her defense d

A*(d)=  argmax /UG(a1,...,am)PG(s1,...,sm
(a1,-es am)EA1 X Am

d,aq,...,am)dss ...dsp.

Then, we would get pp(aq, ..., am|d) = Pr(A*(d) < (a4, ..., am)), which may be approximated by simu-
lation as earlier.

We discuss now the assessments of Pg and Ug. For Pg we may use the same approach as
described above, based on Dirichlet distributions and/or processes. This means that, e.g., in the con-
tinuous case we could use a Dirichlet process centered around the Defender’s assessment pp with
concentration §; for each attacker. Then, based on the expert judgment aggregation literature, see
Cooke (1991), O’Hagan et al. (2006) and Clemen and Winkler (1990), we could aggregate through
various rules, including the arithmetic mean. In this case, the random Py would be 1/n3" P,.. Alter-
natively, we could have a distribution over the weights of the various Py, terms.

For Ug we could use the following approach. Suppose that uq, ..., Uy, are our point estimate utility
functions for each of the attackers, and di,...,d,, is a disagreement point, obtained e.g. through
uncoordinated ARA analysis. Then, we could define ug = (uy — dq)@ + -+ - + (Um — dm)?))V/9, as the
group utility function. Finally we would just need to consider a density f(q) over the exponent g of the
group utility function. See Esteban and Rios Insua (2014) for a justification.

4 Multiple defenders vs one attacker
Besides multiple attackers, it is also common to have multiple defenders. Examples include:

 Different banks, which share information to create credit scores for customers in order to reduce
default rates and fraud.

+ Airline companies,which each run baggage screening systems to prevent the introduction of
bombs on planes, but must generally trust the security systems of each other when transferring
luggage between carriers, see Kunreuther and Heal (2003).

« The multinational military effort in Afghanistan,where the United States, Great Britain, Canada
and others seek to protect the government from overthrow by the Taliban.

Note that each defender may each be protecting its own targets (as in the case of several countries,
each defending its territory against al Qaeda), or they may defend a common target (as when several
companies jointly invest in computer security to protect a database that they all use). These defenders
may act independently, or with weak or strong coordination.

We thus consider now the case in which several defenders face a single attacker.

4.1 Uncoordinated defenders

We start by the case of n uncoordinated defenders D;, i = 1,...,n that need to face an attacker
A. Examples include neighbours who decide whether or to protect their homes from burglars with
an alarm, irrespective of what the other neighbours make; companies which decide to protect their
intranets from internet attacks, irrespective of what other companies do; or countries which decide to
protect their port entries from bioterrorist attackers, irrespective of what other countries decide to do.

We focus on supporting defender D¢, who needs to deploy defensive resources di € D4 to face
an attacker A, in company of the other n — 1 defenders, who make their corresponding decisions
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di,i = 2,...,n. The attacker observes their decisions, and make his attacking decision a € A. The
interaction between D; and A through their respective decisions d; and a, leads to a random result
S; € S;. The i-th Defender faces multiattribute consequences cp, which depend on her defense effort
d and the results s;. She then gets her utility u;. The attacker will get his multiattribute consequences
ca, which depend on his attack effort a and his results s;,i = 1, ..., n. He then gets his utility ug,.

We thus assume we are supporting the first Defender, who aims at finding her optimal defense
strategy di. The consequences for the Defender are evaluated through her utility u4(d, s1). For this,
she computes her expected utility, conditional on what the other defenders and the attacker will do,

Ur(1ldas . )= [ s, $0p1(s1]h, . . )1

Then, based on her forecast of what the other defenders will do, and what the attacker will do given
the deployed defences, she will compute

ur(@n) = [+ [ r(nidas ..., o, @)pr(@lch, o . do)pA (e, . 0r) A ..

and solve for
max d),
max YP1(d)
to find her optimal defense resource allocation.
As before, we need to assess pq(a|ds, ..., dn), as well as py(ds, ..., dp). For the first distribution,
we use the earlier argument that

a*(dy,...,dp) =arg max/ /uA(a S1,---,Sn)PA(S1s -+, Sn oo, dp)dsy ... dsy.

acA

However, the Defender lacks knowledge about u,y and ps. We may model her uncertainty about
them, through random utilities and probabilities (UA,PA), and propagate that uncertainty to obtain
the random optimal attack, given their defenses dq, do, ..., dp

A*(d1,...,d,,)=argmax/---/UA(a,sh...,s,,)PA(s1,...,s,1 ..., dp)dsq ...dsy.

acA
Note that a typical structural assumption would be
,OA(S1, ,s,,|a, di, ..., dn) =Tl pA(s,-|a, d,)

We need to assess also p¢(dy, ..., dp), that is what defender D¢ believes how the other defenders
will perform. Because of the simultaneous and uncoordinated nature of the defenders, we may as-
sume that they are independent so that p;(do, ..., dp) = ML, p1(d;). We thus describe how to assess
p+1(dz), through a similar argument as above. Indeed, D, would aim at solving, similarly to what Dy
does,

1/12(d2\d1,d3,---,dn,8):/Uz(dz,Sz)Pz(Sz\d1,d2,---,dn,a)dsz,

Va(dp) = / / Vin(doldy, s, .. d @)P2(aldr, Do ., dn)po(das .. ) ddy ... Ay i,

d; = arg max y(d),
deD,

14



to find her optimal defense resource allocation. However, we lack knowledge about u, and the py’s. If
we model our uncertainty through U, and the corresponding P,’s we would get the desired distribution
as

D>2k =arg max/ s / U2(d2, 82)P2(S2|d1,d2, e, dn, a)Pz(a|d1,d2, . dn)Pz(dz, ,dn)dd1 ...dd, da,
deD,

which, again, may be approximated by simulation. The same argument would be applied for the other
defenders.

Note that in the previous argument we could start a recursion based on what the other defenders
think of what a given defender is doing. This reminds us of the level-k thinking model in Stahl and
Wilson (1995).

4.2 Coordinated defenders

When the Defenders coordinate, one must distinguish complete cooperation from partial cooperation.
Examples of complete cooperation include soldiers in a combat squadron, or a neighborhood associ-
ation that requires all households to contribute a fixed amount to provide security. In these situations,
there is centralized decision making and so one can view the problem as a two-person Sequential
Defend-Attack game, as analyzed in Section 2.

Partial cooperation is typically more complicated. A prominent example is the international military
alliance between the United States, the United Kingdom, Australia, and Poland which led to the
invasion of Iraq in 2003. Each nation had different interests and made different contributions, but there
was sufficient common ground and negotiated structure that mutual choices were made. A looser
level of coordination occurs in, say, a Neighborhood Watch program, for which different individuals
volunteer different amounts of time and financial support, and coverage may vary widely, depending
upon personal circumstances.

In the ideal cooperative case, each Defender elicits her probabilities about the Attacker’s choice,
conditional on all sets of defensive actions, and also her probabilities for the outcomes given the
attack and the defenses. If each Defender finds that her expected utility is maximized by the same
set of set of joint decisions, then the problem is solved. But such agreement is rare.

An alternative, when there is disagreement, is to compromise. The Defenders could accept any
set of decisions for which each Defender receives an increase in her expected utility. If there is more
than one set of defense choices that has that property, then the Defenders negotiate, and perhaps
decide to use the set that maximizes the minimum gain in expected utility, or which maximizes the
average gain in expected utility.

Regrettably, it may often happen that there is no set of decisions that improves all the expected
utility of all Defenders. In that case hard negotiation is required, and Defenders who anticipate large
gains in expected utility must find ways to compensate those who expect a loss. The chosen solution
depends sensitively upon the resources and relationships between the Defenders.

There are other options. If none of the Defenders feels confident in her elicited probabilities for the
Attacker’s choice and/or her elicited probabilities for the outcomes, conditional on all sets of defense
choices, then they might regard their probabilities as a draw from a common distribution. By pooling
their beliefs, the Defenders could broker agreement on a common set of probabilities, enabling a
unified solution as if there were a single Defender. This approach entails combination of subjective
beliefs, which is notoriously problematic, but also often necessary.

Formally, first, we could perform our ARA based single defender analysis for each defender, thus
obtaining a disagreement point (dy, ..., d;), which would be associated with the corresponding optimal
expected utilities (W7, ..., V}). Note though that such values may not be jointly attainable, since they
are obtained individually. Now given that the defenders jointly implement (d1, ..., d,) and the attacker
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implements a, the results of the interaction will be (s, ..., sp), which will lead to a utility u;(d;, s;) for
each defender D;. Define, then, the overachievement for defender D; as

gi(si) = max((u;(d;, sj) — V), 0).

max M ( E g(S) ) / p(S‘ S |a d‘ e On)dS‘ ...dS .
] ] 339N I I ’ n

5 Multitarget Protection

We, finally, consider Sequential Defend-Attack games in which the Defender must protect multiple
targets from a threat. Examples of Defenders in such games include:

» A mayor, who must allocate police resources across multiple precincts, to control several kinds
of criminal activity.

* A CEO, who must develop a budget that funds different departments within the organization,
where each department (target) faces competition from a competitor (threats).

* A government, which assigns security personnel to embassies in other countries, where its
interests may be threatened by bombs, mobs, or espionage.

The game can be seen as an application of portfolio theory in which an opponent observes the
Defender’s investments and seeks to minimize her return.

Suppose there are / targets and J kinds of resources. The Defender may deploy an amount dj; of
the jth resource to protect the ith target, so the entire decision is represented by the matrix D = {d; }.
These allocations must satisfy two standard constraints:

The first ensures that negative investment is impossible, and the second implies that there is a ceiling,
Tj, on the amount of the jth resource that is available. In general, there are additional constraints,
such as the requirement that a bomb detecting dog must always be accompanied by a security officer,
or a directive that some targets receive a minimum level of protection. The feasible choice set for the
Defender is denoted by D.

In this Sequential Defend-Attack game, the Attacker has K resources that may be used for attack.
He observes the initial set of investments D and decides to allocate to the ith target an amount aj, of
the kth attack resources. Similarly to the Defender, his full decision is represented by a matrix A such
that entry @y > 0 and >, aix < T,. The Attacker may also have additional constraints, such as a
policy of not using more than three bombs on a single target. The feasible choice set for the Attacker
is denoted by A.

The interaction between the Defender and the Attacker at the ith target produces a random out-
come S; which takes a value s; € S;. A specific set of outcomes across all targets is denoted by
s =(s1,...,5/), where s € S = §1 x --- x §;. The Defender’s realized utility is up(D, s) and the At-
tacker’s realized utility is us(A, s). In some applications the utility might also depend upon the actions
chosen by the opponent, and then the utility functions for the Defender and Attacker would be written
as up(D, A, s) and uxy(D, A, s), respectively. The ARA is a bit more complicated, but conceptually it is
straightforward.
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The Defender seeks the optimal investment D* € D. Often she can make plausible conditional
independence assumptions that assert that the outcome at the ith target only depends on the total
investments by both opponents for that target, and not upon the outcomes at other targets. That
assumption would fail if, e.g., one target was a power plant and another target was protected by an
electric fence powered by that plant. The conditional independence assumption could be relaxed,
at the cost of having to elicit full joint distributions over outcomes at multiple targets, which imposes
significant cognitive burden. So this ARA assumes conditional independence, and the Defender need
only assess the probabilities pp(s;j|d;, a;), where d; = (dj1, ..., djy) and a; = (a1, ..., aix), fori =1,..., 1.

The Defender calculates her expected utility for each feasible allocation D, conditional on each
feasible allocation of the attack, A:

/
Up(DIA) = /‘S up(D, s) [[ Polsild:, ads.
i=1
If the Defender is also able to assess probabilities pp(A|D), reflecting her belief about which attack
will be chosen when she selects allocation D, then she can compute her unconditional expected utility
for each possible defense:

(D) = /A o(D|A) pp(A|D) dA, )

and solve for the optimal defense, D* = argmaxp.p p(D).

As usual, the trick is to assess pp(A|D). Following the method in Section 2, the Defender attempts
to solve the problem faced by the attacker A. If she knew his utility function us(A, s) and his probbilities
for outcomes conditional on defenses and attacks on each target, or pa(s;|d;, a;), then she would
calculate his expected utility as

I
Ua(AD)= [ ua(A,s) [] paisi|d a)ds.
i=1
Of course, she does not know his true utilities and probabilities, but she can place subjective dis-
tributions over both, and thus can generate random (U,a, P4). Thus she can repeatedly sample and
solve

!
A*(D) = arg max / Ua(A,s) [ Pa(sildi a))ds
Aca Js i1

to find pp(A|D), her estimate for the probability of the attack which maximizes the Attacker’s expected
utility. She uses this distribution in (2) to find her best feasible allocation.

6 Discussion

We have provided approaches to generalisations of the Sequential Defend-Attack model. We first
dealt with cases in which several defenders need to face several attackers. The standard approach
would combine ideas from noncooperative and cooperative game theory. We have focused here in an
approach based on the ARA framework, distinguishing the cases in which the defenders and/or the
attackers are coordinated or not. We have analysed the case of one attacker vs several defenders
and one defender vs several attackers. We have also analysed cases in which several targets need
to be protected.

It is possible to generalize the previous discussion to include cases with multiple attackers, mul-
tiple defenders and multiple targets, all in the same context of an Sequential Defend-Attack game,
by combining the earlier principles. The ideas extend to other ARA templates like the simultaneous
Defend-Attack or the Sequential Defend-Attack-Defend models.
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Modelling Opponents in Adversarial Risk Analysis

Adversarial Risk Analysis has been introduced as a framework to deal with risks derived from the
intentional actions of adversaries. The analysis supports one of the decision makers, who must
forecast the actions of the other agents, and typically this forecast must take account of random
consequences resulting from the set of selected actions. The solution requires one to model the
behavior of the opponents, which entails strategic thinking. The supported agent may face different
kinds of opponents, who may use different rationality paradigms; e.g., the opponent may behave
randomly, or seek a Nash equilibrium, or perform level-k thinking, or use mirroring, or employ prospect
theory, among many other possibilities. We describe the appropriate analysis for these situations, and
also show how to model the uncertainty about the rationality paradigm used by the opponent through
a Bayesian model averaging approach, suggesting a way to validate the opponent models. We focus
on simultaneous decision-making by two agents.

1 Introduction

Recent applications in counterterrorism, cybersecurity and competitive corporate decision making
have driven renewed interest in developing practical tools and theory for analyzing the strategic cal-
culation of intelligent opponents who must act in scenarios with random outcomes. We use the
term Adversarial Risk Analysis (ARA) to describe approaches in which the solution is based upon
an explicit Bayesian model of the capabilities, probabilities and utilities used by the opponent in his
analysis. For various concepts, methods and applications see Rios Insua et al. (2009), Wang and
Banks (2011), Banks et al. (2011), Rios and Rios Insua (2012), Sevillano et al. (2012), and Razuri
et al. (2013).

In ARA, the aim is to support one of the players who will use a decision analytic approach to
solve her decision-making problem. To this end, she needs to forecast the actions of the other agents
and, based on her own choice, the outcomes which she and her opponents will receive. This is
not a new problem; it can be viewed as a Bayesian approach to game theory, and was proposed,
non-constructively, by Kadane and Larkey (1982) and Raiffa (1982) and Raiffa et al. (2002). The
approach has been criticised by Harsanyi (1982) and Myerson (1997), among others. From a practical
standpoint, the main obstacle in implementing the decision analytic approach has been the lack of
explicit mechanisms which allow the supported decision maker to encode her subjective probabilities
about all the components in her opponents’ decision making.

ARA deals with this problem within the framework of a Bayesian model for the supported decision-
maker’s uncertainty. She may face various kinds of opponents, who may use different rationality
paradigms. However, she herself is a rational expected utility maximiser, in accordance with the
Bayesian decision theory developed in Savage (1954).

Specifically, this paper treats opponents who may act at random, or be Nash equilibria seeking,
level-k thinking, mirror equilibria seeking, or prospect maximising, but other kinds are possible. We
describe how to model each of these opponents, and then use Bayesian model averaging to incor-
porate uncertainty about the rationality paradigm used by the opponent. Details on Bayesian model
averaging can be found in Hoeting et al. (1999) and Clyde and George (2004); a longer treatment is
given in Chipman et al. (2001). As discussed, this may be used to validate the supported decision-
maker’s model for her opponent.

The structure of the paper is as follows. We first present the problem of discrete simultaneous
games, and briefly compare the game-theoretic and ARA approaches. Next we will describe models
for the various kinds of rationality used by opponents, and then how those models can be combined in
order to reflect uncertainty about the kind of rationality being used by the opponents in the game. We
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will also examine the cognitive burden of the analyses that pertain to different rationality paradigms.
Although this paper focuses on two-person discrete simultaneous games, the methodology may be
extended to more complex cases.

2 Basics

The two-person discrete simultaneous game is described by the Multi-Agent Influence Diagram in
Figure 6. These diagrams were proposed by Koller and Milch (2003), and use rectangles to indicate
decisions, ovals to indicate probability distributions, and hexagons to indicate preferences.

o —T
N /

Figure 6: Two person simultaneous game

In this example there are two agents, the Defender and the Attacker. the Defender chooses from
a finite set of actions D = {d1, ..., dn}, while the Attacker simultaneously chooses from the finite set
A = {a,...,an}. These choices correspond to the rectangles indicated by the corresponding initial.
the Defender and the Attacker receive payoffs Yp and Y,, respectively, which depend upon both of
their actions (d, a) and (in general) a random outcome w; e.g., in a Prisoner’s Dilemma game, this
randomness might correspond to the chance of getting a strict or lenient judge. The hexagons in the
diagram indicate the utilities up and u, received by the Defender and the Attacker, respectively, from
the payoffs Yp and Y.

the Defender’s expected utility associated with the pair of actions (d,a) € D x A is

Up(d,a) = / Up(a, d, w)pp(wla, d) dw,

where up(a, d,w) represents the utility she gets from a payoff Yp(a, d,w) and pp(w|a, d) represents
her beliefs about the chance of obtaining the outcome w, given the chosen pair of actions a and d.
Similarly, the Attacker’'s expected utility is

Ya(d,a) = /uA(a,d,w)pA(w|a,d)dw.

Under the strong assumption of common knowledge (Gibbons, 1992 or Myerson, 1997), the Defender
and the Attacker are expected utility maximisers who know the other’s probabilities, utilities, and
choice set, and both know that all of this is commonly known. In that case, the game may be described
in bimatrix form:

a
d | ¢D(dv a)’ wA(d’ a)

When the common knowledge assumption holds, players can predict with certitude their oppo-
nent’'s best responses to each of their actions by solving the opponent’s decision problem. the At-
tacker’s best response, known by the Defender, is then

Ra(d) = argmaxy(d, a)
acA
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and, similarly, the Defender’s best response, known by the Attacker, is

Rp(a) = argmaxyp(d, a).
deD

These predictive models of best response R4 and Rp are used to find a Nash equilibrium solution
for the game, consisting of a pair of actions (d*, a*) that are best responses to each other, so that
d* = Rp(a*) and a* = Ru(d*). Since a Nash equilibrium solution is not guaranteed to exist for
discrete games, often the action sets are extended to include randomised strategies, consisting of
probability distributions over the original set of actions, so that a solution can always be found for the
extended game (Nash, 1951). However, the common knowledge assumption is implausible in many
applications. Raiffa et al. (2002), Rothkopf (2007), and Lippman and McCardle (2012) discuss its
failure in detail. ARA avoids this problematic assumption through Bayesian modelling.

Specifically, the Defender must acknowledge her uncertainty about how her opponent solves his
decision problem. Depending upon the kind of rationality paradigm she believes the Attacker uses,
she may have to place subjective distributions over the utilities and probabilities held by the Attacker.
She may also have to model what the Attacker thinks about her decision behavior. Things can quickly
become complicated. To start with a very simple example, suppose the Defender believes that the
Attacker has some value v(a) associated with each of his possible actions, and that he will select the
action a* = arg max,c 4 v(a). This model would predict the Attacker’s action if the Defender knew the
values v(a;) = v;, for i = 1,...,n. But without telepathy, the Defender must proceed as a Bayesian
and describe her uncertainty about (v4, ..., v,) through a joint distribution (V4, ..., V,) ~ F, where F
represents her probabilistic beliefs about the values the Attacker holds. Thus, the Defender believes
that the Attacker will choose action a; with probability pp(aj) = Pe(V; = max{Vj,..., Vn}). Now, in
order to maximize her own expected utility, the Defender solves

max1p(d) = > n(d,a)pp(a) (3)

i=1

to find the action d that maximizes her expected utility. The point of this simple example is to show
how the Defender can replace common knowledge with subjective belief, and then proceed to select
the action that is optimal under traditional Bayesian decision theory.

The next section extends this simple example by showing how the Defender can obtain the prob-
abilities pp(a) that she needs for her solution under various models for the kind of rationality that the
Attacker uses. At various points, we shall mention random probabilities and utilities, which, when
invoked, will refer to a common probability space (©, F, P) with atomic elements 6.

3 Probabilistic models of opponent behavior

In general, the Defender does not know what kind of rationality (or solution concept) the Attacker will
use in choosing his decision. There are many standard kinds of rationality described in the literature,
and this section shows how the Defender should use ARA with respect to some of them. Later, we
combine them into a mixture model, so that the Defender can incorporate her personal uncertainty
about the Attacker’s solution concept, both to make her decision and to learn about the Attacker’s
rationality, eventually validating the models she uses.

3.1 Non-strategic opponents

First, assume that the Defender believes that the Attacker is non-strategic. In that case, it is as if
she were playing Nature, in the standard decision-theoretic parlance (French and Rios Insua, 2000),
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since the Attacker makes his decision at random, without regard to the Defender’s action. Based on
past data and/or expert opinion, the Defender will self-elicit her distribution pp(a).

If the contest is repeated and the Attacker lacks memory of previous moves, then he chooses ran-
domly and independently each time. Then, the Defender would learn her distribution over his action
space through a multinomial distribution, perhaps starting with a Dirichlet prior. Here, the Defender
initially assumes a Dirichlet distribution (p1, ..., pn) ~ D(a4, ..., an), where p; is her initial subjective
probability that the Attacker chooses action a;. Then, after T iterations of the game, suppose the
Attacker has selected action a; exactly h; times, so that the counts for his actions are (h4, ..., hp),
with >, h; = T. Bayesian inference shows that the Defender’s posterior distribution for the Attacker’s
choice is D(aq + hy, ..., an + hp).

the Defender can now make point probability forecasts for the Attacker’s non-strategic choice.
Under the Dirichlet-Multinomial model, one possibility is that

a; + h;

NS5\ = ) —
pp°(a;) = E(p;|data) 77-_,_2 o

i=1,..,n.
Now the Defender can solve

n
diis = argmax > vp(d. a))pp"(a)
i=1
to determine her best choice in the non-strategic case.

In a slightly more general vein, suppose that the Attacker has memory, and can recall previous
games {(a;, cij,w)}f:1. To simplify the exegesis, we assume he can recall only the preceding game,
and we also limit the outcome of that game to discrete levels indexed by w, reflecting, say, the degree
of success from his action. Both of these simplifying assumptions can be easily weakened.

In this case, through the Markov property, the Defender can use a matrix beta prior, as in Rios
Insua et al. (2012), to learn the corresponding parameters through

(1 Pl G~ Dl . )
If, after an (a;, dj, w) game, the Attacker has selected action ay exactly hzw times, then
(P1, ..., Pn)|aj, dj, w, data ~ D(aqj“’ + hqu, ,agw . h%“’),

and the Defender could use the probability mass function
aZu + th

pBS(ax|a;, d, w, data) = E(py|a;, dj, w, data) = Y g e

where Al =3~ ol” and T/ = 3", hl”.

A shortcoming of this approach is that the size of the conditioning set grows according to the
product of the cardinalities of the sets D, A and Q2. However, by using the concept of mixtures of
Markov chains (Raftery, 1985), one can linearly control the size of the conditioning set by writing

pp(alaj, dj,w) = wipp(ala;) + wopp(ald;) + wapp(alw).

In order to make inference about the transition probabilities and weights, one can use Gibbs sampling,
as described in Rios Insua et al. (2012). Note that the inference made on the weights may be used to
check the influence of various elements a;, d; or w over the decisions made by the Attacker, through
the posterior probabilities p(w;|data),i = 1,2,3. This approach extends to the case in which the
Attacker can recall a larger number of previous games.

This Bayesian analysis is related to learning and the fictitious play approach in games (Ozdaglar
and Menache, 2011). If all opponents play in this way, then under certain conditions, they converge
to a Nash equilibrium, if they interact for a sufficiently long time.
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3.2 A Nash equilibrium seeking opponent

Suppose now that the Defender believes that the Attacker will compute a Nash equilibrium in order to
select his action. This could be because she believes that he has studied game theory or he is long-
memoried non-strategic player, as in Section 3.1, and they have played many games. the Defender
has a subjective distribution for (U,, P4), the random variables that represent her beliefs about the
Attacker’s utility and probability functions (ua, pa). She also has a subjective distribution for (Up, Pp),
which is what she thinks the Attacker believes are her utility and probability functions (up, pp).

For the probability space (©, F, P) with atomic elements 6 € ©, the random quantities ARA needs
are (U4, p4) ~ (Ua, Pa) and (u9, p%) ~ (Up, Pp). Also, the Defender believes the expected utilities are
(¥(d,a),v4(d, a)), with, for example,

Yh(d,a) = /ug(a,d,w)pg(w]a,d)dw.

For each 6, she can compute the corresponding Nash equilibrium (dVE (6), aVE (6)), which will typically
be a distribution over the d’s and a’s, respectively. Then, she would calculate

pp- (@) = P{0 : a"5(0) = a}).

Ultimately, she will choose the action dj that solves

n
die = arg;naxz Up(d, a;) ppE (a)).
i=1

3.3 A level-k thinking opponent

When the Attacker’s rationality entails level-k thinking (Stahl and Wilson, 1994, 1995), the Defender
knows that the Attacker selects his action based upon a chain of reasoning of the form “l know that
she knows that | know ...” which will go k levels deep, depending on how sophisticated she believes
the Attacker to be. Thus, if the Defender is non-strategic, then she is a level-0 thinker and chooses
randomly. If she chooses her action by assuming that the Attacker is non-strategic, then she is a level-
1 thinker, and so forth. In this situation, the Defender will maximize her expected utility by reasoning
one level further in the chain than the Attacker.
Concretely, the Defender needs to solve (3), so that her optimal decision is

d" = argmax 3 (d, a)poa).

In thinking about pp(a), she considers the problem faced by the Attacker and assumes he is an
expected utility maximizer, so that his decision can be predicted by solving

a' = argmaxy_ va(d,a)pa(d)
a d
= arg maxz [/ ua(d, a,w)pa(wla,d)dw| pa(d). (4)
a d

the Defender does not know the elements (uga, pa(- | -), pa) required to solve (4). As a Bayesian, she
expresses her uncertainty about these through random utilities and probabilities (Ua, Pa(: | -), Pa).

24



Substituting these in (4), she obtains a predictive distribution for the random action that the Attacker
will choose through

A=argmax ) [/ Ua(d, a,w)Pa(wl|a, d)dw | Pa(d), (5)
a d

which provides the pp(a) = P(A = a) required in (3). Here, the distribution of A may be estimated
through Monte Carlo simulation by sampling from the random utilities and probabilities and computing
(and accumulating) the corresponding optimal alternatives as follows:

Algorithm 1 Simulating from the Attacker’s problem
For k=1toN
Sa'mple (ul,’i’ pli( | ')’ plji) ~ (UAs PA(' | ')5 PA)

Compute aj = argmaxa y 4 [f uk(d, a, w)pk(w|a, d)dw] pi(d)
Approximate pp(a;) ~ card{1 <k <N:af=a;}/N, for i=1,...,n

In the above triplet (Ua, Pa(: | -), Pa), the first two elements are relatively easy for the Defender to
elicit, since they represent what the Defender believes are the Attacker’s utility function and beliefs
about the outcome of the game, conditional on their decisions. For example, Ps(w|a, d) could be

typically she shall have information about the interests of the Attacker, which she would aggregate
with a weighted measurable utility function. Using the relative risk aversion concept, as in Dyer and
Sarin (1979), she could model the risk attitude of the Attacker that determines the functional form of
his utility function. Finally, her uncertainty would be reflected by distributions over the weights and
the risk coefficient.

In contrast, the third element, P4(d), often requires higher-level strategic thinking. She must
model what the Attacker thinks is the Defender’s decision analysis. Thus, if the Defender supposes
that the Attacker is a level-1 thinker and that he is modeling her as an expected utility maximizer,
then from his perspective the Defender is modeled as solving the optimization problem in (3) where
the required (up, pp(-|-), pp) are unknown to him and therefore must be represented through random
utilities and probabilities (Up, Pp(- | ), . This allows the Attacker to elicit his predictive probability
distribution over her possible actions through

pa(D=d)=P (arg maxz [/ Up(x,a,w)Pp(w

2)d| Pola) - d> , ©)
XeD
which he needs to solve (4).
Now, the Defender’s uncertainty about the Attacker’s distribution Fp for (Up, Pp(-|-), Pp) can be
modeled though Fp ~ Fp, her probabilistic beliefs about the distributions Fp used by the Attacker to
solve her decision problem and compute his pa(d). This gives the P(d) required in (5) through

PA(D =d) = (arg maxz [ / Up(x, a,w)Pp(wlx, a)dw} Pp(a) = d) 7)
XeD
with (Up, Pp(- |-), ~ Fp and now Fp ~ Fp.

Once the Defender obtains P4(d), she plugs it into (5) to obtain the pp(a) required in (3), thus
making the Defender a level-2 thinker. This level-k thinking process would continue, to the level
that the Defender deems necessary, as in the following loop, which constitutes a hierarchy of nested
decision models:
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Algorithm 2 Simulating the level-k thinking process.

For i =2until necessary
Sample (U}, Pi(-|-),Pi) ~Fi, with F} ~ Fj
Compute Pi(A*=a)=P (argmaXXEA Y deD U Ui(d, x, w)Pi(w|d, X)dw] Pi(D* =4d) = a)
Sample (U3, P3(-|-),P}) ~Fp, with Fj ~ F3
Compute P}(D* =d) =P (argmaxyep Y . 4 | [ Ub(x, 2, w)Pi(w(x, a) dw] PF1(AT! = a) = d)
i=i+1

Note that pp(a) and P4(d) defined, respectively, by (5) and (7) would correspond to a step /i = 1 in
the above loop. To sum up the levels of thinking in level-k rationality, in terms of the notation we have
used,

* Alevel-0 the Defender acts at random (non-strategically).

A level-1 the Defender chooses her alternative optimally, but assumes that the Attacker acts
randomly, since he is level-0, as in Section 3.1.

* A level-2 the Defender assumes that the Attacker is a level-1 thinker, who assumes she is a
level-0 thinker. the Defender stops at/ = 1 in the hierarchy, with the elicitation of Fp ~ Fp, which
determines P4(d) representing her beliefs about the probability model used by the Attacker to
predict her action.

* A level-3 the Defender assumes that she faces a level-2 adversary: the Attacker’s calculation
assumes she is a level-1 thinker, who thinks about his decision problem. the Defender stops at
i = 2 in the hierarchy, with the elicitation of F2 ~ F2, which determines P3(A? = a).

* Alevel-4 the Defender assumes she is facing a level-3 adversary: the Attacker takes strategic
account of what he thinks she thinks he thinks that she thinks. the Defender stops ati = 2 in
the hierarchy, with the elicitation of F3 ~ F3, which determines P(D? = d).

* And so forth.

Rothschild et al. (2012) use this framework to provide an algorithmic approach to level-k thinking.
the Defender first selects the value k (k > 1) that she believes is the depth of the Attacker’s analysis.
Then she places a uniform distribution over the Attacker’s actions and supposes that the Attacker
has a uniform distribution over her action space. the Defender climbs up one level at a time in
the hierarchy by simulating from these distributions and solving to find the new distribution for the
Attacker’s optimal action, and consequently inferring his corresponding new distribution over her own
action set. She repeats until she reaches the selected value of k.

We believe it is more natural to think in terms of an alternative approach, as suggested in Rios
Insua et al. (2009) and Rios and Rios Insua (2012), which proceeds by climbing up in the hierarchy
until the Defender finds it difficult to reason meaningfully. Indeed, at higher levels of thinking, the
Defender will probably lack the information necessary to assess the distributions ]—“j\ or ]—“[7 associ-
ated with the decision analysis of A’ or D', respectively. At this point, the Defender might assign
a probability distribution over A’ or D', without going deeper in the hierarchy, thus summarizing all
remaining information she might have through the direct assessment of PL(A’ = a) or P4(D' = d), as
appropriate. At this stage, one reasonable possibility is to assign a noninformative distribution. Lee
and Wolpert (2012) describe experiments in behavioral game theory which suggest that opponents
rarely go further than levels k = 2 or 3. So, in most cases, the Defender need not to go beyond k = 3
or 4 in order to be one level deeper than the Attacker.
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3.4 Mirror equilibria seeking opponents

As implied above, level-k thinking can lead to an infinite regress. Classical game theory avoids this
through the common knowledge assumption, which allows players to use deterministic predictive
models of their opponents decisions. Another way to preclude the infinite regress is through the
mirroring equilibria concept (Banks et al., 2011), which we formalize here.

Assume the Defender has distributions for the random quantities (Ua, Pa(: | ), Pa(-)) which de-
scribe the Defender’s beliefs about the Attacker’s utilities and probabilities, as in (5), and she also
has (Up, Pp(-|-), Pp(-)) which describe the Defender’s beliefs about the Attacker’s beliefs regarding
her own utilities and probabilities, as in (6). This completes step i = 1 in the hierarchy for level-k
thinking.

Suppose for a moment that the Defender has a point mass in 6, in the generic probability space
(©, F,P) introduced previously. In this case, she believes that the Attacker will solve for his optimal
decision

a*(0) =argmax > [/ ui(d, a,w)ph(w]| a,d)dw| pi(d).
a d

Next, by assuming non-point mass support P, she deduces her predictive distribution over the At-
tacker’s choice in A,
pp-(a)=P{0 € ©:a*(h) = a}).

Note that this may be written as

pME(a) =P (arg max » V Ua(d, X, w)Pa(w | d,x)dw] Pa(d) = a) .
d

xeA

Symmetrically, knowing ¢ and pM¥E(a), the Defender thinks that the Attacker believes that she is
trying to solve

d*(f) = arg max [Z/u%(d,a,w)p%(w a,d)dw] pME (a),
d d

which yields a random optimal decision d(¢) on the underlying probability space (©, F, P) with distri-
bution
Pt (d)=P({0 € ©:d*(0) = d}).

We say that the distributions pME (a) and pXE(d) are consistent and constitute a mirroring equilibrium
if they jointly satisfy

pME(d) =P (arg Xmaxz [ / Up(x, a,w)Pp(w| x, a)dw] pME (@) = d) , (8a)

pME (@) =P (arg mxaxz [/ Ua(d, X, w)Pa(w | d,x)dw] pME(d) = a> . (8b)
d

When such a pair of consistent distributions is found, this provides the Defender with a probabilistic
model to predict the Attacker’s actions, in which it is assumed that he uses the mirroring equilibria
as the solution concept. At this point, the Defender steps out of the mirror-equilibrium paradigm and
uses her utility and probability functions to select the action that maximizes her expected utility; i.e.,

max ) _ ¢p(d, &P} (@),
i=1
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with p,")”E(a) obtained as the fixed point solution of the mirroring analysis (8). The mirroring solution
concept may be viewed as a way to enforce coherence in the Defender’s probability judgments.

The existence of fixed points solutions to the mirroring distribution equations in (8) is a complex
question and only partial solutions are generally available. The problem is closely related to the
existence of Bayes Nash equilibria solutions. The most complete theory exists in the context of two-
person asymmetric auctions. Lebrun (1996, 1999) shows that when bidders’ valuations of the item
on auction have continuous densities, then the solution to the mirror equilibrium exists, is unique, and
the cumulative distribution functions over the bidders decisions are continuous. However, except in
some special cases (Kaplan and Zamir, 2012), no closed form solution exists. Various algorithms
for solving the asymmetric two-person auction have been proposed (Li and Riley, 2007; Gayle and
Richard, 2008), but none has been proven to converge. In fact, the most popular approaches, based
on the back-shooting algorithm, are provably non-convergent in an open ball around 0 (Fibich and
Gavish, 2011). This is an important open problem.

4 A cognitive comparison

We compare now the four previous models for opponent rationality, and the standard game theoretic
approach, in terms of the cognitive load that the analysis imposes upon the Defender. The following
table summarizes the elements which must be assessed according to the hierarchy in level-k thinking
introduced in Section 3.3.

1 2 3 4 5 6
0 up po(la,d) pp(@a ua pa(-la,d) pa(d)
1 UD PD(- |a, d) PD(a) UA PA(- |a, d) PA(d)
2 U3 P3(lad) P3a U Pi(lad) Pi)

Row 0 corresponds to the utilities and beliefs of the Defender and the Attacker, as perceived by
themselves. The elements in row 1 all correspond to random utilities and probabilities perceived by
the Defender, including those she believes are the Attacker’s utilities and probabilities, subscripted
by A, and those she believes are the Attacker’s beliefs about her own utilities and probabilities, sub-
scripted by D. Row 2 includes what she believes the Attacker believes are her beliefs about the
Attacker’s utilities and probabilities, subscripted by A, and so forth.

To summar